Prüfmotoren
Prüfmotoren zur Klopfwertbestimmung von Kraftstoffen
(Test engines for determining the knock value of fuels)
Von Prof. Dr.-Ing. W. Wilke VDI, Ludwigshafen a. Rh.1)
Als Maß für die Klopffestigkeit eines Ottokraftstoffs wird allgemein die Oktanzahl benutzt. Sie setzt wegen ihrer Abhängigkeit von der Motorbauart die einheitliche Festlegung eines Prüfmotors voraus.
Bisher diente als solcher allgemein der in den Vereinigten Staaten von Amerika entwickelte sog. CFR-Motor. Neuerdings hat der Reichs- und Preußische Verkehrsminister einen von der I. G. Farben-industrie entwickelten Prüfmotor als deutschen Prüfmotor für Ottokraftstoffe anerkannt. Sein Aufbau und seine Egebnisse werden nachstehend erstmalig mitgeteilt.
Für die Bewertung der motorischen Eignung der Dieselkraftstoffe hat sich als Maßstab die Cetenzahl neuerdings die Cetanzahl — weitgehend eingeführt, die die Zündwilligkeit des Kraftstoffs im D ieselm otor anzeigt. Flingegen ist das Meßverfahren zu ihrer Bestimmung noch In der Entwicklung begriffen. A m meisten zur Anwendung kommt das Zündverzugverfahren. Die Erfahrungen der I. G. Farbenindustrie bei der Entwicklung und Untersuchung eines Prüf-Diesel-motors dürften auch hier für die anzustrebende Vereinheitlichung der Prüfverfahren und -motoren wertvolle Unterlagen abgeben.
Ottokraftstoffe Entwicklung der Klopfmaßstäbe
Als im Jahre 1924 die I. G. Farbenindustrie mit der praktischen Erprobung des von ihr gefundenen Gegen-klopfmittels Eisenkarbonyl begann, war es notwendig, das verschiedenartige Klopfverhalten der einzelnen Kraftstoffe in eineri Maßstab einzuordnen. Die Einflüsse auf das Klopfverhalten waren zu jener Zeit noch sehr wenig bekannt, ebensowenig gab es damals in Deutschland Klopfprüfmotoren oder gar besonders ausgearbeitete Prüfverfahren. Nur wenige Stellen befaßten sich mit der Klopfwertprüfung, und jede einzelne hatte ihren eigenen Motor mit dazugehörigem Untersuchungsverfahren. Dieses bunte Bild spiegelt sich schon in der viel-seitigen Benennung des Klopfens wieder: Klopfen, Detonieren, Pinken, Klingeln, Boxen usw. waren damals die gleichzeitig gebrauchten Ausdrücke für ein und dieselbe Erscheinung.
Die Entwicklungsgeschichte des KlopfprüfStandes der I. G. ist zugleich die der Klopfmessung in Deutschland. Wir begannen unsere Versuche mit einem Vierzylinder-Benz-Motor. An dieser Maschine wurde das Verdichtungs verhältnis so eingestellt, daß bei gewöhnlichem Betrieb das damals übliche Benzin klopfte. Dieses Klopfen konnte mit Eisenkarbonyl als Zusatz beseitigt werden, und die hierzu benötigte Menge war ein Maßstab für das Klopfen. Ein Benzin war also um so klopffester, je weniger Eisen karbonyl bis zum Verschwinden des Klopfens gebraucht wurde. Diese erste Klopfskale ist, zusammen mit den später entwickelten Klopfmaßstäben, in Bild 1 dargestellt und umfaßte naturgemäß nur einen verhältnismäßig engen Meßbereich. Schon damals wurde ein Vergleichsbenzin
bei den Untersuchungen verwendet, und es war eine müh selige Arbeit, nach dem Aufbrauchen eines Vorrats ein zweites geeignetes Vergleichsbenzin herzustellen. Die Zusammenarbeit mit der amerikanischen Standard Oil Co. brachte es mit sich, daß deren Klopfwerte in die I. G.-Werte zu übersetzen waren, was sehr umständliche und zeitraubende Vergleichsversuche als Voraussetzung hatte. Bei der Skale der Standard Oil Co. wurde als Vergleichskraftstoff ein Eichbenzin verwendet, dem bestimmte Mengen Bleitetraäthyl zugesetzt wurden. Man erkennt, daß z. B. der Klopfwert 15 der I. G.-Skale den gleichen W ert hatte wie etwa der von 4 der Standard-Skale. Die internationale Einführung der Oktan-Skale, die seit 1932 angewandt wird, war ein wichtiger Schritt zur Vereinheitlichung der Klopfprüfverfahren. Jetzt endlich konnte überall mit genau den gleichen Stoffen als Vergleichsgrundlage gemessen werden, und deren Ergänzung stellt keine Aufgabe mehr dar, weil sie als chemisch reine Stoffe immer und überall in gleicher Beschaffenheit
hergestellt werden können. Diese Eichstoffe sind das Normal-Heptan, ein unverzweigter Kohlenwasserstoff, und ein iso-Oktan, das 2-2-4-Trimethyl-Pentan, ein verzweigter Kohlenwasserstoff5). Das Heptan ist der stark klopfende, das Oktan der klopffeste Kraftstoff. Der Gehalt an Oktan in der Mischung, d. i. die Oktanzahl, gibt den Klopfwert an. Diese Kohlenwasserstoffe, die herzustellen anfangs außerordentliche Schwierigkeiten machte, werden heute bei der I. G. synthetisch erzeugt. Wie sich diese internationale Skale zu den beiden anderen schon erwähnten Skalen verhält, ist in Bild 1 ebenfalls dargestellt. Zugleich ist angegeben, welche Klopffestigkeit unsere heute üblichen Kraftstoffe, wie sie an den Zapfstellen erhältlich sind, haben.
- ) Vgl. W. Gießmann, Z. V D I, Bd. 80 (1936) S. 833.
- ) Vgl. A . v. Phüippoeüh, D VL-Jahrbuch, München u. Berlin 1931.
E n t w i c k l u n g d e r P r ü f m o t o r e n
So bunt wie die angewandten Prüfverfahren und Klopfmaßstäbe, so mannigfaltig waren früher auch die Prüfmotoren. Die Mängel, die den Mehrzylindermotor zur Klopfwertbestimmung wenig geeignet machen, wurden schon frühzeitig erkannt, und wir gingen bald zur Ver wendung von kleinen handlichen Einzylinder-Motoren über. Da solche in Deutschland nicht vorhanden waren, stellten wir diese seit dem Jahre 1929 selbst her, und zwar zunächst mit feststehendem, von 1930 an mit veränder lichem Verdichtungsverhältnis. Mit diesen Prüfmotoren beteiligten wir uns an den ersten deutschen Vergleichs versuchen 5)
Entscheidend beeinflußt wurde das Klopfprüfwesen durch den im Jahre 1932 von dem amerikanischen Cooperative Fuel Research Committee eingeführten CFR-Motor 2), der sich rasch als internationaler Einheitsmotor zur Klopfwertbestimmung entwickelte. Alle anderen Prüfmotoren traten diesem Gerät gegenüber in den Hinter grund, und bald dienten bei der internationalen Verständigung über das klopfverhalten ausschließlich Werte, die an diesem Motor und mit der Oktanzahl als Maßstab ermittelt worden waren.
Vergleichsversuche zwischen dem I. G.-Motor und dem CFR-Motor zeigten, daß es nur geringer Änderungen in den Betriebsbedingungen des I. G.-Motors bedurfte, um praktisch die gleichen Meßergebnisse wie am CFR-Motor zu erzielen. Danach arbeiteten wir jahrelang mit diesem Motor, von dem wir im ganzen vier Stück selbst an gefertigt hatten, zu unserer vollen Zufriedenheit.
Die durch Vereinheitlichung vom Prüfmotor und Prüfverfahren erzielte Übereinstimmung in den Meß werten von verschiedenen Prüfständen ist heute sehr befriedigend. In Bild 2 und 3 sind zwei Versuchsreihen dargestellt, die auf Anregung des Deutschen Verbandes für die Materialprüfungen der Technik vor und nach der Vereinheitlichung durchgeführt sind. Der große Fortschritt in der Genauigkeit der Klopfwertbestimmung während dieser drei Jahre ist klar ersichtlich, sinkt doch die Streuung — deren Höchstwert 27 Einheiten der Oktanzahl erreicht — von 13,3 auf 2,4 im Mittel aller Versuche.
Als es die Devisenlage des Reiches erschwerte, weitere CFR-Motoren ein zuführen, trat im Jahre 1936 der Deutsche Verband für die Materialprüfungen der Technik mit der Bitte an die I. G. heran, ihre Erfahrungen im Bau von Klopfprüfständen der Allgemeinheit zur Verfügung zustellen. Wir kamen diesem Wunsch nach und übergaben unsere Zeichnungen der Firm a Daimler-Benz, Werk Mannheim, die nunmehr die Geräte unter der Bezeichnung „I. G.-Prüf-motor“ anfertigt und vertreibt. Um den Anschluß an die CFR-Werte des Auslandes zu sichern, werden die Meßwerte eines jeden einzelnen Prüfmotors vor seiner Ablieferung gründlich geprüft.
Aufbau des I. G . - Prüfmotors für Otto kraftstoffe
Bild 4 und 5 zeigen den Prüfmotor im Schnitt, Bild 6 zeigt ihn in der Ansicht. Der Unterteil des ver schiebbaren Zylinders hat ein Flach gewinde. Die dazugehörige Mutter
ist als Schneckenrad ausgebildet, in das eine Schnecke eingreift. Durch Drehen der Schnecke kann das Verdichtungsverhältnis von 4:1 bis 15:1
geändert werden. Den jeweiligen Stand des Verdichtungsverhältnisses zeigt die Trommel skale c an. Neben ihr ist eine Oktanskale, auf der an näherungsweise der Klopfwert der Probe nach dem CFR-
Motor-Verfahren2) abgelesen werden kann. In dem abnehmbaren Zylinderkopf befinden sich die hängenden, von
gleicharmigen Kipphebeln gesteuerten Ventile und der Springstift- oder Sprungstabindikator2) zum Messen der
Klopfstärke. Die Änderung des Ventilspiels bei der Verschiebung des Zylinders wird dadurch ausgeglichen, daß
der Drehpunkt der gleicharmigen Kipphebel die halbe
Verschiebung mitmacht.
Die in dem Kühlmantel eingesetzte „nasse“ Lauf
büchse aus Grauguß ist auswechselbar. Der Kolben ist
aus Leichtmetall; Pleuelstange und Hirth-Kurbelwelle3)
laufen in Rollen- bzw. Kugellagern. Für die Umlauf
schmierung dient eine regelbare Pumpe, der Schmieröl
stand kann durch ein Schauglas überwacht werden. Der
Zündzeitpunkt wird auf einer nachstellbaren Teilung ab
gelesen; die Vorzündung bleibt über den ganzen Meß
bereich des Motors gleich. Eine 12 V-Zünd-Lichtmaschine,
die zugleich den Strom für die Klopfmeßgeräte liefert,
erzeugt die Zündspannung über einen Unterbrecher mit
Spule. Der Zylinder wird durch Verdampfungskühlung
je nach dem Untersuchungsverfahren mittels Wasser oder
Glykol-Wasser-Gemisch gekühlt, wobei der Umlauf durch
Schwerkraftwirkung geschieht und die entstehenden
Dämpfe durch eine besondere Kühlschlange in einen Kon
densator geführt und dort niedergeschlagen werden.
Der Vergaser ist.bei den neueren Ausführungen ein Dreischwimmer-Vergaser mit Umschalthahn und gemein samer Düse samt Trichter, Bild 7 und 8. Die Schwimmer nadelventile sind durch Drehen der Kraftstoffbehälter in der Höhe verstellbar, wodurch sich der Brennstoff spiegel und dadurch das Gefälle gegenüber der feststehen den Düsenmündung ändert. Das Kraftstoff-Luft-Gemisch ist auf diese Weise in seiner Zusammensetzung viel feiner regelbar als z. B. durch Ändern des Düsenquerschnittes.
Die eingestellten Brennstoffspiegel werden an Marken ab gelesen, wobei eine Teilstrichänderung durch eine ganze Umdrehung des Kraftstoffbehälters hervorgerufen wird. Das Brennstoff-Luft-Gemisch kann in seiner Zuleitung durch einen Heizeinsatz elektrisch bis zu 150 ° vor gewärmt werden. Die Vorheizung ist über einen Wider stand an der Schalttafel regelbar. Die Gemischtempe ratur wird an einem Quecksilberthermometer abgelesen. Die Belastung des Prüfmotors geschieht über ein Keilriemenpaar durch einen gekapselten Drehstrom-Kurz schlußläufer, der zugleich zum Anlassen dient. E r sitzt verschiebbar auf Spannschienen, so daß Riemenscheiben von verschiedenen Durchmessern aufgebracht werden können. In der Regelausführung kann er auf 380 V oder 220 V Wechselspannung geschaltet werden. Die Drehzahl des Stromerzeugers bleibt unverändert, während die Dreh zahl des Prüfmotors durch die Größe der Keilriemen
scheibe bestimmt wird. Über dem Stromerzeuger sitzt die Zünd-Lichtmaschine; beide sind durch einen weiteren Keil riemen verbunden.
Die Schalttafel trägt den sog. Klopfstrommesser, den Heizstrommesser samt Regelwiderstand, die nötigen Schalter und ein Schreibpult. Ein Leistungsmesser zeigt
die Stromentnahme beim Anfahren des Prüfmotors und dessen Leistung während des Betriebes an.
Der Klopfstrommesser mißt thermoelektrisch die Temperaturerhöhung eines Widerstandes durch den Klopf-strom, d. i. den zwischen den Kontakten des Springstift indikators b obachtung hat das Gerät eine Dämpfung, die zum rasche
ren Einstellen des Motors oder zum Prüfen des Spring
stiftindikators abgeschaltet werden kann. Da der In
dikator den Klopfstrom steuert, muß seiner Einstellung
besondere Sorgfalt zugewendet werden, weil hiervon die
Ergebnisse von Vergleichsmessungen mit anderen Prüf
stellen stark abhängig sein können. Es handelt sich hier
bei um die Einstellung der Spannung der beiden Blatt
federn, die die Kontakte tragen, sowie der Spannung der
Schraubenfeder für die Einstellschraube, ferner des Ab
standes der Kontakte selbst. Hierfür sind besondere Hilfs
geräte entwickelt, wobei die gefühlsmäßige Einstellung
durch eine meßtechnische ersetzt wird. Diese Meßgeräte
sind in einem hand
lichen Kasten unterge
bracht, Bild 9.
Die Untersuchungen
über den Verlauf des
Klopfstromes mit der
Braunschen Röhre hat
ten übrigens das be
achtenswerte Ergebnis,
daß der Klopfstrom für
eine Verpuffung nicht
etwa aus einem einzi
gen Stromstoß besteht,
sondern aus mehreren
unregelmäßigen Im
pulsen, Bild 10, die von
der oben erwähnten
Einstellung des Spring
stiftindikators abhan
den.
ie Leistung des Prüfmotors beträgt bei 1 000 U/min
rd. 1kW . Der Kraftstoffverbrauch ist mit etwa 0 ,5 1/h
sehr gering, so daß es in der Regel möglich ist, mit 0,25 1
Kraftstoff die Klopffestigkeit zu bestimmen. Man kann
mit dem I. G.-Prüfmotor Kraftstoffe sowohl für K raft
fahrzeuge als auch für Flugzeuge untersuchen1).
E r g e b n is s e d e s P r ü f m o t o r s
Die gute Übereinstimmung der Meßergebnisse mit
dem I. G.- und dem CFR-Motor zeigen Versuche, die die
Arbeitsgemeinschaft für Kraftfahrwesen beim Reichs- und
Preußischen Verkehrsministerium kürzlich durchführtela).
In Bild 11 und 12 sind aus der Fülle der Versuche für vier
CFR-Motoren und vier I. G.-Prüfmotoren die Streuungen
der gemessenen Klopfwerte verschiedener Kraftstoffe
dargestellt. Im Mittel ergibt sich bei den CFR-Motoren
eine Streuung von 3,4, bei den I. G.-Prüfmotpren. dagegen
nur von 2 £ Einheiten der Oktanzahl. Man erkennt dem
nach, daß zwischen dem CFR-Motor und dem I. G.-Prüf
motor praktisch kein Unterschied besteht. Aus diesem
Grunde ist der I. G.-Prüfmotor nach dem Erlaß des
Reichs- und Preußischen Verkehrsministers vom 25. März
1938 in Deutschland für die einheitliche Klopffestigkeits
prüfung von Leichtkraftstoffen zugelassen.
Wie groß das Bedürfnis nach einem deutschen Klopf-
prüfgerät ist, ergibt sich aus der Verbreitung, die der
Motor in der kurzen Zeit von zwei Jahren gefunden hat:
Es sind heute über 100 Motoren im Betrieb oder- im Bau.
In Bild 13 sind die Eichergebnisse der ersten 25 I. G.-
Prüfmotoren zusammengefaßt. In jedem der Prüfmotoren wurden sechs Kraftstoffe (Erdölbenzine und Hydrier benzine), und zwar Fliegerbenzine (1, 2, 3) und K raft wagenbenzine (a, b, c ) untersucht. Die Unterschiede betragen durchweg ebenfalls nur 2 bis 3 Oktanzahl-Ein heiten und sind damit nicht größer als die der CFR- Motoren. Weiter wurde für alle Prüfmotoren die Eich kurve mit I. G.-Eichbenzin in Mischung mit Reinbenzol nach dem CFR-Motor-Verfahren aufgestellt; die Streuung
dieser Werte beträgt, ähnlich wie bei den Einzelunter-
suchungen, nur 2 bis 3 Einheiten der Oktanzahl.
Dieselkraftstoffe
Auch bei den Dieselkraft stoffen spielt die Untersuchung des Verbrennungsablaufes eine große Rolle, wobei das Klopfen ebenfalls diejenige; Eigenschaft der Kraftstoffe ist, die bei der Erzeugung vorwiegend zu berücksichtigen ist. Ein Maß für die Neigung des Kraftstoffes zum Klopfen ist der Zündverzug, d. i. die Zeit vom Ein spritzbeginn bis zum Zündbeginn.' Man hat versucht, analytische Meßverfahren zur Beurteilung der Dieselkraftstoffe heranzuziehen; die, wenn auch nicht zahlreichen, Abweichun gen von dem vorausgesetzten Zusammenhang machen aber die analytischen Bestimmungen — ebenso wie bei den Ottokraftstoffen — unsicher. Im Gegensatz zu den Klopfprüf-verfahren für Ottokraftstoffe, die allgemein anerkannt sind, geht man indessen bei der Untersuchung der Dieselkraftstoffe in bezug auf ihr Klopfverhalten weder in Deutschland noch im Ausland einheitlich vor. E s hat sich zwar eingebürgert, die Diesel kraftstoffe nach Cetenzahlen5) oder Cetanzahlen“) zu bewerten, jedoch sind über den Prüfmotor doch keine ein heitlichen Vorschläge vorhanden. Bekanntlich weist das Klopfverhalten der beiden Motorengattungen, des Otto- und des Dieselmotors, eine Gegensätzlichkeit auf, Übersichtstafel 1. Die wichtigsten Übersichtstafel
1. V o r a u s s e t z u n g e n d e s K l o p f e n s i m D i e s e l - u n d O t t o m o t o r .
Betriebsbedingungen, die von der Seite des Motors auf das
Klopfen Einfluß haben, sind: Verdichtung, Drosselung oder Überladung, Belastung, Drehzahl und Wärmezustand der Maschine. Man sieht z. B., daß das Klopfen beim Ottomotor mit dem Verdichtungsverhältnis, der Belastung sowie mit der Betriebserwärmung der Maschine zunimmt, während beim Dieselmotor das Gegenteil der Fall ist. Diese Gegensätzlichkeit kann man auch in der Darstel lung der gegenseitigen Abhängigkeit der Oktanzahl und der Cetenzahl zeigen 7).
Die Oktanzahl hat um so höhere
Werte, je niedriger die Cetenzahl ist, d. h. die Klopffestigkeit und Zündwilligkeit stehen im umgekehrten Verhältnis
zueinander. Einer Oktanzahl von 100 entspricht eine Cetenzahl von etwa 20 und einer Oktanzahl null eine Cetenzahl von etwa 55.
A u f b a u e in e s P r ü f m o t o r s f ü r D ie s e l k ra ft s t o f fe
Bei der Untersuchung deutscher Dieselkraftstoffe, die bis in die Jahre 1929 und 1930 zurückgeht, benutzten wir bei der I. G. Farbenindustrie zunächst vorhandene lang-
samlaufende Einzylindermotoren, an denen die Messungen mit gewöhnlichen Federindikatoren durchgeführt wurden. Wir mußten aber bald'zu schnellaufenden Motoren über
gehen, wofür wir eine sehr geeignete Bauart in dem ^stehenden Einzylindermotor der Motorenwerke Mannheim von etwa 11 Hubraum fanden. Dieser Motor wurde auf
veränderliche Verdichtung umgebaut; Bild 14 und 15 zeigen seinen Aufbau, Bild 16 zeigt seine Ansicht8). Die
Maschine läßt sich in einem Drehzahlbereich von etwa 500 bis 2 000 U/min verwenden und ihre Leistung beträgt bei 1 000 U/min rd. 3 kW.
Auch hier sind die Kipp hebel für die Ventilbetätigung in gleicher Weise wie bei dem Prüfmotor für Leichtkraft stoffe gelagert. Der Zylinderkopf und die Zylinderbüchse
werden durch Schnecke und Schneckenrad verschoben, so daß der Verbrennungsraum hierdurch verändert werden kann. Auf diese Weise läßt sich das Verdichtungsverhältnis von etwa 8 : 1 bis 25 :1 verändern. Der Zylinderkopf mit der Laufbüchse ist durch eine als Handrad ausgebildete Gegenmutter kräftig gegen das Gehäuse abgestützt, so daß die Maschine völlig erschütterungs frei läuft. Auch hier wird Verdampfungskühlung angewen det; eine elektrische Heizvorrichtung dient zum uftvor wärmern Bei der Ausbildung des Verbrennungsraumes war anzu
streben, daß er bei der Verdichtungsänderung annähernd ähnlich blieb. Eine strenge geometrische Ähnlichkeit läßt sich allerdings wegen des gleich bleibenden Zylinderdurchmessers nicht erzielen. Am einfach sten ist wohl die in Bild 17 dargestellte Form. Der Verdichtungsraum befindet sich in der
Hauptsache im Zylinderkopf und kann durch einen
zusätzlichen Kolben verändert werden. Doch läßt dieser
Zylinderkopf bei dem vorgesehenen kleinen Zylinder
durchmesser zu wenig Platz für die Ventile.
Die besten Ergebnisse wurden mit der Brennraum
gestaltung nach Bild 18 und 19 erhalten. Im Kolbenboden
befindet sich eine annähernd halbkugelförmige Vertiefung,
in die der Kraftstoff durch einen kegelförmigen Anschnitt
seitwärts von der Zylinderwand her eingespritzt wird.
Die verwendete Einlochdüse spritzt mit einer Neigung
von 12 ° gegen den Kolbenboden. Die Länge des Kegel
einschnittes ist so groß, daß der Kraftstoffstrahl gut zer
stäuben kann. Die Kugelförm des Verbrennungsraumes
wurde als Idealform angestrebt, weil hierbei der kleinste
Durchbrennweg erzielt wird.
Es wurde unmittelbare Einspritzung gewählt, da sie
klar und deutlich Unterschiede der untersuchten K raft
stoffe in ihrem Verbrennungsverlauf erkennen läßt. Ein
Vorkammermotor z. B. wäre infolge seiner Unempfindlich
keit gegenüber Kraftstoffänderungen weniger geeignet.
B e s t im m u n g d e r C e te n z a h l
Bei der Bestimmung des Zündverzuges wird die Ver
dichtung solange geändert, bis der Zündverzug einen be
stimmten Wert erreicht
hat, den wir auf 1 8 0
Kurbelwinkel festgelegt
haben. Die Einspritzung
geschieht dabei stets 20°
Kurbelwinkel vor dem
oberen Totpunkt. Durch
Vergleich mit Ceten als
zündwilligem und Alpha-
Methylnaphthalin als
stark klopfendem Be-
zugskraftstoff läßt sich
so die Cetenzahl des
untersuchten Kraftstof
fes bestimmen.
Vielfach wird der
Zündverzug auch bei un
veränderlicher Verdich
tung gemessen. Die Be
ziehungen zwischen bei
den Verfahren geben
Bild 20 und 21 wieder.
Die Cetenzahl ist hier
einmal in Abhängigkeit
vom Verdichtungsver
hältnis bei unveränder
tem Zündverzug und das
andere Mal in Abhängig
keit vom Zündverzug bei
gleichbleibendem Ver
dichtungsverhältnis dar
gestellt. Nach beiden
Verfahren wurden für
die gleichen Kraftstoffe
die gleichen Cetenzahlen
ermittelt. Der Nachteil
des Verfahrens mit
gleichbleibender Verdich
tung liegt jedoch darin,
daß der Meßbereich nur
gering ist; z. B. liegt er
bei dem Verdichtungs
verhältnis 16 nur zwi
schen den Cetenzahlen 25
und 60, Bild 21. Bei Ceten
zahlen unter 25 läuft die
Maschine bei dieser Ver
dichtung nicht mehr ein
wandfrei, und bei höhe-
ren Cetenzahlen als 60 ist
kein meßbarer Unterschied im Zündverzug mehr vorhanden.
Auf Grund dieser
Erkenntnis wurde das Verfahren der Messung bei gleich
bleibendem Zündverzug für die weiteren Untersuchungen
angewendet.
E r g e b n i s s e d e s P r ü f - D ie s e l m o t o r s
Bild 22 gibt Eichkurven des I. G.-Prüf-Dieselmotors wieder. Als Eichstoffe dienten — an Stelle von Ceten und Alpha-Methylnaphthalin — ein badischer Dieselkraftstoff und ein Steinkohlenmittelöl. E s ergibt sich dabei, daß zwischen der Verdichtungsveränderung, ausgedrückt in mm Zylinderkopfverschiebung, und der Änderung der Cetenzahl praktisch eine geradlinige Abhängigkeit besteht. Infolge äußerer Einflüsse — Verkokung der Düse, Hängenbleiben der Nadel, Änderung des Wärmezustandes der Maschine — muß die Eichung wiederholt werden. Es ist bei uns Regel, daß vor und nach jeder Versuchsreihe diese Beziehung nachgeprüft wird. Dabei hat sich heraus gestellt, daß bei einer Veränderung des Zusammenhanges sich die Verdichtungslinie parallel zu sich verschiebt. Es genügt daher in der Regel, nur einen oder zwei Punkte dieser Geraden zu bestimmen, wodurch das Meßverfahren sehr vereinfacht wird und an Genauigkeit gewinnt. Während an der oberen Grenze die Dieselkraftstoffe in allen praktisch
vorkommenden Fällen unmittelbar gemessen werden kömien, geht die untere Grenze für die unmittel bare Messung etwa bis zu der Cetenzahl 10. Kraftstoffe mit noch niedrigerer Cetenzahl können durch Mischungen bestimmt werden.
Bild 23 gibt die Ergebnisse von Vergleichsversuchen
wieder, die am I. G.-Prüf-Dieselmotor und am CFR-
Motor8'1) nach dem Verfahren mit veränderlicher Verdich
tung durchgeführt wurden. Die größten Abweichungen
betragen 5 Cetenzahl-Einheiten. Die Übereinstimmung ist
als gut zu bezeichnen, wenn man beachtet, daß die Mo
toren von verschiedener Bauart und nicht aufeinander
abgestimmt sind.
M e s s u n g d e s Z ü n d v e r z u g s
Für die Messung des Zündverzugs sind verschiedene
Verfahren anwendbar, Bild 24 bis 26. So wird an dem
Prüfmotor des Forschungsinstituts für Kraftfahrwesen
und Fahrzeugmotoren an der Technischen Hochschule
Stuttgart9) der Einspritzbeginn und der Zündbeginn
durch je einen Quarzgeber bestimmt, die einen Stromkreis
steuern, Bild 24. Die Dauer der Stromeinschaltung ent
spricht dem Zündverzug und wird durch ein Galvanometer
angezeigt. An Stelle des Galvanometers läßt sich zur
Messung des Zündverzugs auch eine auf dem Schwung
rad angeordnete Glimmlampe verwenden.
Die Deutsche Versuchsanstalt für Luftfahrt (DVL)
gebraucht für Zündverzugmessungen den von ihr ent
wickelten Druckgeber10). Der Druckgeber spricht an,
wenn der Verdichtungsdruck, auf den er durch Verbin
dung mit einer Druckluftflasche eingestellt ist, über
schritten wird. Der Einspritzbeginn wird von einem
elektrischen Unterbrecher an der Einspritzdüse angezeigt.
Beide Vorgänge lassen sich durch eine Schaltung, z. B.
nach Bild 25, verbinden.
Wir verwendeten ursprünglich für Zündverzugs
messungen die Ionisierungsstrecke, Bild 2611). Erforder
lich sind hierfür — ähnlich wie bei der Anordnung
Bild 25 — zwei Stromkreise, deren Spannungen einander entgegengeschaltet werden.
In dem mittleren Teil der Leitung, der beiden Stromkreisen gemeinsam ist, liegt eine Glimm lampe, die auf dem Schwung rad angeordnet ist. In dem ersten Stromkreis, dem linken in Bild 26, befindet sich der Einspritzkontakt. Wird nun die Brennstoffnadel angehoben, so leuchtet die Glimmlampe auf. Am Ende des Zündverzugs, also bei Zündbeginn, wird durch die heißen Verbrennungsgase die Ionisierungsstrecke im zweiten (rechten) Stromkreis leitend, so daß die Spannung in dem gemeinsamen Teil der Leitung wegen der Gegenschaltung der Stromquellen ausgeglichen wird und die Glimmlampe erlischt.
E r m i t t l u n g d e s Z ü n d v e r z u g s a u s d e m D r u c k v e r l a u fAußer dem Zündverzug sind
jedoch zur Beurteilung eines
Dieselkraftstoffes auch der
Druckanstieg und der Ver
brennungshöchstdruck von Be
deutung. Hierzu ist es not
wendig, den gesamten Druckverlauf aufzuzeichnen, wie
dies nunmehr bei den Untersuchungen mit dem I. G.-Prüf-
Dieselmotor geschieht. Am besten dürfte sich für die
Druckaufnahme der Piezo-Quarzindikator1'-’) mit der
Braunschen Röhre eignen; gegenüber dem häufig ange
wandten Schleifenoszillographen hat die Braunsche Röhre
den Vorteil der Einfachheit und Billigkeit13). Die Haupt
teile der Anordnung sind: die Druckdose mit den Quarzen
als Geber, die Braunsche Röhre als Beobachtungsgerät,
der Verstärker und das Seitenablenkgerät für den Ka
thodenstrahl10. 14). Das Druckdiagramm erscheint auf
dem Leuchtschirm der Braunschen Röhre und kann ge
gebenenfalls im Lichtbild aufgenommen werden. Zugleich
mit dem Druckverlauf lassen sich Zeitmarken, Totpunkt
marken, Kennzeichnungen des Einspritzbeginns usw. auf
nehmen.
A b l e n k g e r ä t f ü r d e n K a t h o d e n s t r a h l
Bei den im Handel befindlichen Indikatoren wird für die waagerechte Seitenablenkung des Strahls vielfach ein
Kippschwinggerät verwendet, wobei die Druckvorgänge
in Abhängigkeit von der Zeit aufgezeichnet werden. Man
versucht dabei, dieses Gerät mit der Hand so einzuregeln,
das es synchron mit dem Motor läuft. Dies läßt sich nur
schwer erreichen, so daß das Diagramm auf der Bild
fläche wandert, was die Auswertung erschwert. Wir
haben ein besonderes Seitenablenkgerät entwickelt, das
unmittelbar mit der Maschine gekuppelt ist. Dieses zeich
net den Druck in Abhängigkeit vom Kurbelwinkel auf. Da
der Kurbelwinkel der Zeit praktisch verhältnisgleich ist,
erhalten wir hier in einfacher Weise ein Zeit-Druck-
Diagramm; es hat zudem noch den großen Vorteil, daß
es auf der Röhre nicht wandert.
In einem Gehäuse aus Isolierstoff, das mit der
Kurbelwellen-Drehzahl umläuft, befindet sich ein Wasser
ring, der als Widerstand und Spannungsteiler verwendet
wird und sich m it' dem Gehäuse infolge der Fliehkraft
dreht, Bild 27. Durch zwei Schleifringe am Gehäuse wird
dem Wasserring eine Gleichspannung zugeführt. Die Zu
führungselektroden am Wasserring sind genau um 180 °
versetzt, wobei der Totpunkt in die Mitte des aufzunehmenden
Diagramms, Bild 28, zu liegen kommt. Der
Abgriff der Spannung für die Seitenablenkung geschieht
durch einen Finger, der fest angeordnet ist und im
Wasserring schleift. Wir erhalten so den gesamten
Druckverlauf gleichmäßig über dem Kurbelwinkel. Bei
diesem Diagramm interessieren uns aber vorzugsweise
die Vorgänge bei der Verbrennung um den oberen Tot
punkt herum, die etwa einen Kurbelwinkel von 45 ° ein
nehmen. In einfacher Weise lassen sich nun diese Vor
gänge auf dem Schirm der Braunschen Röhre auf die
ganze Diagrammlänge auseinanderziehen. Zu diesem
Zweck werden die Elektroden am Wasserring um 45 °
gegeneinander versetzt, Bild 29. Man erhält dann das
Diagramm, Bild 30, in dem man die VerbrennungsVor
gänge genau verfolgen kann.
In ähnlicher Weise haben wir ein Seitenablenkgerät
entwickelt, mit dem man das Druck-Weg-Diagramm zur
Ermittlung der indizierten Leistung aufzeichnen kann,
Bild 31 und 32. Bei dieser Anordnung stellt man ein
Gleichspannungsfeld zwischen zwei Metallplatten her,
zwischen denen sich Wasser befindet. Darin läuft ein
kleiner Metallstift als Spannungsabnehmer um. Bei Ver
wendung von vollkommen ebenen Platten, die parallel zu
einander angeordnet sind, hat die zwischen den Platten
und dem Stift auftretende Spannung einen reinen Sinus
verlauf. In diesem Fall würde die Seitenablenkung einer
unendlich langen Schubstange entsprechen. Bei endlicher
Schubstangenlänge kann man die Abweichung von der
Sinuslinie dadurch erhalten, daß man die Platten krümmt.
Anstatt einer Flüssigkeit kann ein fester Widerstand Ver
wendung finden, auf dem ein Stift schleift.
D r u c k a n s t ie g u n d V e r b r e n n u n g s h ö c h s t d r u c k
Der Verbrennungshöchstdruck und der Druckanstieg
d p ! d p in at/° Kurbelwinkel sind für die Bewertung eines
Kraftstoffes sehr wichtig, stellen doch beide ein Maß für
die Beanspruchung des Dieselmotor-Triebwerkes dar.
Hoher Verbrennungsdruck und steiler Druckanstieg er
geben harten Gang des Motors. Der Höchstdruck wird
unmittelbar aus den> Diagramm abgelesen, und zur
Messung des Druckanstieges dient ein Neigungsmesser.
Damit hat man die wichtigsten Größen des Verbrennungs
vorganges bestimmt.
Der Druckanstieg wird vielfach auch als d p /d t , also
nach der Zeit, in at/s angegeben. Dieser Wert ist inso
fern nicht ohne weiteres anwendbar, als darin die Dreh
zahl nicht erscheint. In Bild 33 ist in Abhängigkeit von
der Motordrehzahl der Druckanstieg dpld<p für verschie
dene Werte von dp/dt dargestellt. In Bild 34 erkennt
man, wie sich bei unveränderlichem Druckanstieg d p i d t
der W ert dp/dp, mit dem Kurbelwinkel also, mit der
Motordrehzahl ändert. Bei niedrigen Drehzahlen ist ein
stärkerer Anstieg vorhanden als bei hohen. Zweck
mäßiger ist es daher, den W ert dp/dp als Maß für den
Druckanstieg zu nehmen.
Wie sich die Abhängigkeit von verschiedenen K raft
stoffen hinsichtlich des Druckanstieges und des Höchst
druckes auswirkt, zeigt Bild 35. E s sind hier Kraftstoffe
verschiedener A rt untersucht, deren Getenzahlen zwischen
25 und 60 liegen. Man sieht, daß der dp/dp-W ert sowie
der Höchstdruck um so höher sind, je niedriger die Ceten-
zahl ist, was im allgemeinen auch zu erwarten war.
Während aber der Höchstdruck nahezu geradlinig mit
abnehmender Cetenzahl ansteigt, wird die Zunahme des
W ertes-dp/dp bei Cetenzahlen unter etwa 35 in schnell
wachsendem Maße steiler. B 4956
1) Vorgetragen vor der Automobil- und Flugtechnischen Gesellschaft Im VDI in Stuttgart.