Prüfmotoren: Difference between revisions

From Old Engine Wiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 31: Line 31:


*) Vgl. W. Gießmann, Z. V D I, Bd. 80 (1936) S. 833.
*) Vgl. W. Gießmann, Z. V D I, Bd. 80 (1936) S. 833.
 
*) Vgl. A . v. Phüippoeüh, D VL-Jahrbuch, München u. Berlin 1931.
**) Vgl. A . v. Phüippoeüh, D VL-Jahrbuch, München u. Berlin 1931.




Line 47: Line 46:


Als es die Devisenlage des Reiches erschwerte, weitere CFR-Motoren ein zuführen, trat im Jahre 1936 der Deutsche Verband für die Materialprüfungen der Technik mit der Bitte an die I. G. heran, ihre Erfahrungen im Bau von Klopfprüfständen der Allgemeinheit zur Verfügung zustellen. Wir kamen diesem Wunsch nach und übergaben unsere Zeichnungen der Firm a Daimler-Benz, Werk Mannheim, die nunmehr die Geräte unter der Bezeichnung „I. G.-Prüf-motor“ anfertigt und vertreibt. Um den Anschluß an die CFR-Werte des Auslandes zu sichern, werden die Meßwerte eines jeden einzelnen Prüfmotors vor seiner Ablieferung gründlich geprüft.
Als es die Devisenlage des Reiches erschwerte, weitere CFR-Motoren ein zuführen, trat im Jahre 1936 der Deutsche Verband für die Materialprüfungen der Technik mit der Bitte an die I. G. heran, ihre Erfahrungen im Bau von Klopfprüfständen der Allgemeinheit zur Verfügung zustellen. Wir kamen diesem Wunsch nach und übergaben unsere Zeichnungen der Firm a Daimler-Benz, Werk Mannheim, die nunmehr die Geräte unter der Bezeichnung „I. G.-Prüf-motor“ anfertigt und vertreibt. Um den Anschluß an die CFR-Werte des Auslandes zu sichern, werden die Meßwerte eines jeden einzelnen Prüfmotors vor seiner Ablieferung gründlich geprüft.




'''Aufbau des I. G . - Prüfmotors''' '''für Otto kraftstoffe'''
'''Aufbau des I. G . - Prüfmotors''' '''für Otto kraftstoffe'''


Bild 4 und 5 zeigen den Prüfmotor im Schnitt, Bild 6 zeigt ihn in der Ansicht. Der Unterteil des ver schiebbaren Zylinders hat ein Flach gewinde. Die dazugehörige Mutter
Bild 4 und 5 zeigen den Prüfmotor im Schnitt, Bild 6 zeigt ihn in der Ansicht. Der Unterteil des ver schiebbaren Zylinders hat ein Flach gewinde. Die dazugehörige Mutter ist als Schneckenrad ausgebildet, in das eine Schnecke eingreift. Durch Drehen der Schnecke kann das Verdichtungsverhältnis von 4:1 bis 15:1 geändert werden. Den jeweiligen Stand des Verdichtungsverhältnisses zeigt die Trommel skale c an. Neben ihr ist eine Oktanskale, auf der an näherungsweise der Klopfwert der Probe nach dem CFR-Motor-Verfahren2) abgelesen werden kann. In dem abnehmbaren Zylinderkopf befinden sich die hängenden, von gleicharmigen Kipphebeln gesteuerten Ventile und der Springstift- oder Sprungstabindikator2) zum Messen der Klopfstärke. Die Änderung des Ventilspiels bei der Verschiebung des Zylinders wird dadurch ausgeglichen, daß der Drehpunkt der gleicharmigen Kipphebel die halbe Verschiebung mitmacht. Die in dem Kühlmantel eingesetzte „nasse“ Laufbüchse aus Grauguß ist auswechselbar. Der Kolben ist aus Leichtmetall; Pleuelstange und Hirth-Kurbelwelle 3) laufen in Rollen- bzw. Kugellagern. Für die Umlauf schmierung dient eine regelbare Pumpe, der Schmieröl stand kann durch ein Schauglas überwacht werden. Der Zündzeitpunkt wird auf einer nachstellbaren Teilung ab gelesen; die Vorzündung bleibt über den ganzen Meß bereich des Motors gleich. Eine 12 V-Zünd-Lichtmaschine, die zugleich den Strom für die Klopfmeßgeräte liefert, erzeugt die Zündspannung über einen Unterbrecher mit Spule. Der Zylinder wird durch Verdampfungskühlung je nach dem Untersuchungsverfahren mittels Wasser oder Glykol-Wasser-Gemisch gekühlt, wobei der Umlauf durch Schwerkraftwirkung geschieht und die entstehenden Dämpfe durch eine besondere Kühlschlange in einen Kondensator geführt und dort niedergeschlagen werden.
 
ist als Schneckenrad ausgebildet, in das eine Schnecke eingreift. Durch Drehen der Schnecke kann das Verdichtungsverhältnis von 4:1 bis 15:1
 
geändert werden. Den jeweiligen Stand des Verdichtungsverhältnisses zeigt die Trommel skale c an. Neben ihr ist eine Oktanskale, auf der an näherungsweise der Klopfwert der Probe nach dem CFR-
 
Motor-Verfahren2) abgelesen werden kann. In dem abnehmbaren Zylinderkopf befinden sich die hängenden, von
 
gleicharmigen Kipphebeln gesteuerten Ventile und der Springstift- oder Sprungstabindikator2) zum Messen der
 
Klopfstärke. Die Änderung des Ventilspiels bei der Verschiebung des Zylinders wird dadurch ausgeglichen, daß
 
der Drehpunkt der gleicharmigen Kipphebel die halbe
 
Verschiebung mitmacht.
 
Die in dem Kühlmantel eingesetzte „nasse“ Lauf


büchse aus Grauguß ist auswechselbar. Der Kolben ist
Der Vergaser ist.bei den neueren Ausführungen ein Dreischwimmer-Vergaser mit Umschalthahn und gemein samer Düse samt Trichter, Bild 7 und 8. Die Schwimmer nadelventile sind durch Drehen der Kraftstoffbehälter in der Höhe verstellbar, wodurch sich der Brennstoff spiegel und dadurch das Gefälle gegenüber der feststehen  
 
aus Leichtmetall; Pleuelstange und Hirth-Kurbelwelle3)
 
laufen in Rollen- bzw. Kugellagern. Für die Umlauf
 
schmierung dient eine regelbare Pumpe, der Schmieröl
 
stand kann durch ein Schauglas überwacht werden. Der
 
Zündzeitpunkt wird auf einer nachstellbaren Teilung ab
 
gelesen; die Vorzündung bleibt über den ganzen Meß
 
bereich des Motors gleich. Eine 12 V-Zünd-Lichtmaschine,
 
die zugleich den Strom für die Klopfmeßgeräte liefert,
 
erzeugt die Zündspannung über einen Unterbrecher mit
 
Spule. Der Zylinder wird durch Verdampfungskühlung
 
je nach dem Untersuchungsverfahren mittels Wasser oder
 
Glykol-Wasser-Gemisch gekühlt, wobei der Umlauf durch
 
Schwerkraftwirkung geschieht und die entstehenden
 
Dämpfe durch eine besondere Kühlschlange in einen Kon
 
densator geführt und dort niedergeschlagen werden.
 
Der Vergaser ist.bei den neueren Ausführungen ein Dreischwimmer-Vergaser mit Umschalthahn und gemein samer Düse samt Trichter, Bild 7 und 8. Die Schwimmer
nadelventile sind durch Drehen der Kraftstoffbehälter in der Höhe verstellbar, wodurch sich der Brennstoff spiegel und dadurch das Gefälle gegenüber der feststehen  
den Düsenmündung ändert. Das Kraftstoff-Luft-Gemisch ist auf diese Weise in seiner Zusammensetzung viel feiner regelbar als z. B. durch Ändern des Düsenquerschnittes.
den Düsenmündung ändert. Das Kraftstoff-Luft-Gemisch ist auf diese Weise in seiner Zusammensetzung viel feiner regelbar als z. B. durch Ändern des Düsenquerschnittes.


Die eingestellten Brennstoffspiegel werden an Marken ab gelesen, wobei eine Teilstrichänderung durch eine ganze
Die eingestellten Brennstoffspiegel werden an Marken ab gelesen, wobei eine Teilstrichänderung durch eine ganze Umdrehung des Kraftstoffbehälters hervorgerufen wird. Das Brennstoff-Luft-Gemisch kann in seiner Zuleitung durch einen Heizeinsatz elektrisch bis zu 150 ° vorgewärmt werden. Die Vorheizung ist über einen Wider stand an der Schalttafel regelbar. Die Gemischtempe ratur wird an einem Quecksilberthermometer abgelesen. Die Belastung des Prüfmotors geschieht über ein Keilriemenpaar durch einen gekapselten Drehstrom-Kurz schlußläufer, der zugleich zum Anlassen dient. E r sitzt verschiebbar auf Spannschienen, so daß Riemenscheiben von verschiedenen Durchmessern aufgebracht werden können. In der Regelausführung kann er auf 380 V oder 220 V Wechselspannung geschaltet werden. Die Drehzahl des Stromerzeugers bleibt unverändert, während die Drehzahl des Prüfmotors durch die Größe der Keilriemen scheibe bestimmt wird. Über dem Stromerzeuger sitzt die Zünd-Lichtmaschine; beide sind durch einen weiteren Keilriemen verbunden.
Umdrehung des Kraftstoffbehälters hervorgerufen wird.
Das Brennstoff-Luft-Gemisch kann in seiner Zuleitung
durch einen Heizeinsatz elektrisch bis zu 150 ° vor
gewärmt werden. Die Vorheizung ist über einen Wider
stand an der Schalttafel regelbar. Die Gemischtempe
ratur wird an einem Quecksilberthermometer abgelesen.
Die Belastung des Prüfmotors geschieht über ein
Keilriemenpaar durch einen gekapselten Drehstrom-Kurz
schlußläufer, der zugleich zum Anlassen dient. E r sitzt
verschiebbar auf Spannschienen, so daß Riemenscheiben
von verschiedenen Durchmessern aufgebracht werden
können. In der Regelausführung kann er auf 380 V oder
220 V Wechselspannung geschaltet werden. Die Drehzahl
des Stromerzeugers bleibt unverändert, während die Dreh
zahl des Prüfmotors durch die Größe der Keilriemen
 
scheibe bestimmt wird. Über dem Stromerzeuger sitzt die
Zünd-Lichtmaschine; beide sind durch einen weiteren Keil
riemen verbunden.
 
Die Schalttafel trägt den sog. Klopfstrommesser, den
Heizstrommesser samt Regelwiderstand, die nötigen
Schalter und ein Schreibpult. Ein Leistungsmesser zeigt
 
die Stromentnahme beim Anfahren des Prüfmotors und
dessen Leistung während des Betriebes an.
 
Der Klopfstrommesser mißt thermoelektrisch die Temperaturerhöhung eines Widerstandes durch den Klopf-strom, d. i. den zwischen den Kontakten des Springstift indikators b
obachtung hat das Gerät eine Dämpfung, die zum rasche
 
ren Einstellen des Motors oder zum Prüfen des Spring
 
stiftindikators abgeschaltet werden kann. Da der In
 
dikator den Klopfstrom steuert, muß seiner Einstellung
 
besondere Sorgfalt zugewendet werden, weil hiervon die
 
Ergebnisse von Vergleichsmessungen mit anderen Prüf
 
stellen stark abhängig sein können. Es handelt sich hier
 
bei um die Einstellung der Spannung der beiden Blatt
 
federn, die die Kontakte tragen, sowie der Spannung der
 
Schraubenfeder für die Einstellschraube, ferner des Ab
 
standes der Kontakte selbst. Hierfür sind besondere Hilfs
 
geräte entwickelt, wobei die gefühlsmäßige Einstellung
 
durch eine meßtechnische ersetzt wird. Diese Meßgeräte
 
sind in einem hand
 
lichen Kasten unterge
 
bracht, Bild 9.


Die Untersuchungen
Die Schalttafel trägt den sog. Klopfstrommesser, den Heizstrommesser samt Regelwiderstand, die nötigen Schalter und ein Schreibpult. Ein Leistungsmesser zeigt die Stromentnahme beim Anfahren des Prüfmotors und dessen Leistung während des Betriebes an.


über den Verlauf des
Der Klopfstrommesser mißt thermoelektrisch die Temperaturerhöhung eines Widerstandes durch den Klopf-strom, d. i. den zwischen den Kontakten des Springstift indikators bobachtung hat das Gerät eine Dämpfung, die zum rascheren Einstellen des Motors oder zum Prüfen des Spring stiftindikators abgeschaltet werden kann. Da der Indikator den Klopfstrom steuert, muß seiner Einstellung besondere Sorgfalt zugewendet werden, weil hiervon die Ergebnisse von Vergleichsmessungen mit anderen Prüfstellen stark abhängig sein können. Es handelt sich hier bei um die Einstellung der Spannung der beiden Blatt federn, die die Kontakte tragen, sowie der Spannung der Schraubenfeder für die Einstellschraube, ferner des Abstandes der Kontakte selbst. Hierfür sind besondere Hilfsgeräte entwickelt, wobei die gefühlsmäßige Einstellung durch eine meßtechnische ersetzt wird. Diese Meßgeräte sind in einem handlichen Kasten untergebracht,  Bild 9. Die Untersuchungen über den Verlauf des Klopfstromes mit der Braunschen Röhre hatten übrigens das beachtenswerte Ergebnis, daß der Klopfstrom für eine Verpuffung nicht etwa aus einem einzigen Stromstoß besteht, sondern aus mehreren unregelmäßigen Im pulsen, Bild 10, die von der oben erwähnten Einstellung des Spring stiftindikators abhanden. ie Leistung des Prüfmotors beträgt bei 1 000 U/min rd. 1kW . Der Kraftstoffverbrauch ist mit etwa 0 ,5 1/h sehr gering, so daß es in der Regel möglich ist, mit 0,25 1 Kraftstoff die Klopffestigkeit zu bestimmen. Man kann mit dem I. G.-Prüfmotor Kraftstoffe sowohl für Kraftfahrzeuge als auch für Flugzeuge untersuchen 1).
 
Klopfstromes mit der
 
Braunschen Röhre hat
 
ten übrigens das be
 
achtenswerte Ergebnis,
 
daß der Klopfstrom für
 
eine Verpuffung nicht
 
etwa aus einem einzi
 
gen Stromstoß besteht,
 
sondern aus mehreren
 
unregelmäßigen Im
 
pulsen, Bild 10, die von
 
der oben erwähnten
 
Einstellung des Spring
 
stiftindikators abhan
 
den.
 
ie Leistung des Prüfmotors beträgt bei 1 000 U/min
 
rd. 1kW . Der Kraftstoffverbrauch ist mit etwa 0 ,5 1/h
 
sehr gering, so daß es in der Regel möglich ist, mit 0,25 1
 
Kraftstoff die Klopffestigkeit zu bestimmen. Man kann
 
mit dem I. G.-Prüfmotor Kraftstoffe sowohl für K raft
 
fahrzeuge als auch für Flugzeuge untersuchen1).
 
E r g e b n is s e d e s P r ü f m o t o r s
 
Die gute Übereinstimmung der Meßergebnisse mit
 
dem I. G.- und dem CFR-Motor zeigen Versuche, die die
 
Arbeitsgemeinschaft für Kraftfahrwesen beim Reichs- und
 
Preußischen Verkehrsministerium kürzlich durchführtela).
 
In Bild 11 und 12 sind aus der Fülle der Versuche für vier
 
CFR-Motoren und vier I. G.-Prüfmotoren die Streuungen
 
der gemessenen Klopfwerte verschiedener Kraftstoffe
 
dargestellt. Im Mittel ergibt sich bei den CFR-Motoren
 
eine Streuung von 3,4, bei den I. G.-Prüfmotpren. dagegen
 
nur von 2 £ Einheiten der Oktanzahl. Man erkennt dem
 
nach, daß zwischen dem CFR-Motor und dem I. G.-Prüf
 
motor praktisch kein Unterschied besteht. Aus diesem
 
Grunde ist der I. G.-Prüfmotor nach dem Erlaß des
 
Reichs- und Preußischen Verkehrsministers vom 25. März
 
1938 in Deutschland für die einheitliche Klopffestigkeits
 
prüfung von Leichtkraftstoffen zugelassen.
 
Wie groß das Bedürfnis nach einem deutschen Klopf-
 
prüfgerät ist, ergibt sich aus der Verbreitung, die der
 
Motor in der kurzen Zeit von zwei Jahren gefunden hat:
 
Es sind heute über 100 Motoren im Betrieb oder- im Bau.
 
In Bild 13 sind die Eichergebnisse der ersten 25 I. G.-
 
Prüfmotoren zusammengefaßt. In jedem der Prüfmotoren
wurden sechs Kraftstoffe (Erdölbenzine und Hydrier
benzine), und zwar Fliegerbenzine (1, 2, 3) und K raft
wagenbenzine (a, b, c ) untersucht. Die Unterschiede
betragen durchweg ebenfalls nur 2 bis 3 Oktanzahl-Ein
heiten und sind damit nicht größer als die der CFR-
Motoren. Weiter wurde für alle Prüfmotoren die Eich
kurve mit I. G.-Eichbenzin in Mischung mit Reinbenzol
nach dem CFR-Motor-Verfahren aufgestellt; die Streuung
 
dieser Werte beträgt, ähnlich wie bei den Einzelunter-
 
suchungen, nur 2 bis 3 Einheiten der Oktanzahl.


E r g e b n is s e d e s  P r ü f m o t o r s


Die gute Übereinstimmung der Mgeßergebnisse mit dem I. G.- und dem CFR-Motor zeigen Versuche, die die Arbeitsgemeinschaft für Kraftfahrwesen beim Reichs- und Preußischen Verkehrsministerium kürzlich durchführtela). In Bild 11 und 12 sind aus der Fülle der Versuche für vier CFR-Motoren und vier I. G.-Prüfmotoren die Streuungen der gemessenen Klopfwerte verschiedener Kraftstoffe dargestellt. Im Mittel ergibt sich bei den CFR-Motoren eine Streuung von 3,4, bei den I. G.-Prüfmotpren. dagegen nur von 2 £ Einheiten der Oktanzahl. Man erkennt dem nach, daß zwischen dem CFR-Motor und dem I. G.-Prüfmotor praktisch kein Unterschied besteht. Aus diesem Grunde ist der I. G.-Prüfmotor nach dem Erlaß des Reichs- und Preußischen Verkehrsministers vom 25. März 1938 in Deutschland für die einheitliche Klopffestigkeits prüfung von Leichtkraftstoffen zugelassen. Wie groß das Bedürfnis nach einem deutschen Klopf-prüfgerät ist, ergibt sich aus der Verbreitung, die der Motor in der kurzen Zeit von zwei Jahren gefunden hat: Es sind heute über 100 Motoren im Betrieb oder- im Bau. In Bild 13 sind die Eichergebnisse der ersten 25 I. G.-Prüfmotoren zusammengefaßt. In jedem der Prüfmotoren wurden sechs Kraftstoffe (Erdölbenzine und Hydrier benzine), und zwar Fliegerbenzine (1, 2, 3) und Kraftwagenbenzine (a, b, c ) untersucht. Die Unterschiede betragen durchweg ebenfalls nur 2 bis 3 Oktanzahl-Ein heiten und sind damit nicht größer als die der CFR-Motoren. Weiter wurde für alle Prüfmotoren die Eich
kurve mit I. G.-Eichbenzin in Mischung mit Reinbenzol nach dem CFR-Motor-Verfahren aufgestellt; die Streuung dieser Werte beträgt, ähnlich wie bei den Einzelunter-suchungen, nur 2 bis 3 Einheiten der Oktanzahl.


Dieselkraftstoffe
Dieselkraftstoffe
Line 276: Line 71:
Auch bei den Dieselkraft stoffen spielt die Untersuchung des Verbrennungsablaufes eine große Rolle, wobei das Klopfen ebenfalls diejenige; Eigenschaft der Kraftstoffe ist, die bei der Erzeugung vorwiegend zu berücksichtigen ist. Ein Maß für die Neigung des Kraftstoffes zum Klopfen ist der Zündverzug, d. i. die Zeit vom Ein spritzbeginn bis zum Zündbeginn.' Man hat versucht, analytische Meßverfahren zur Beurteilung der Dieselkraftstoffe heranzuziehen; die, wenn auch nicht zahlreichen, Abweichun gen von dem vorausgesetzten Zusammenhang machen aber die analytischen Bestimmungen — ebenso wie bei den Ottokraftstoffen — unsicher. Im Gegensatz zu den Klopfprüf-verfahren für Ottokraftstoffe, die allgemein anerkannt sind, geht man indessen bei der Untersuchung der Dieselkraftstoffe in bezug auf ihr Klopfverhalten weder in Deutschland noch im Ausland einheitlich vor. E s hat sich zwar eingebürgert, die Diesel kraftstoffe nach Cetenzahlen5) oder Cetanzahlen“) zu bewerten, jedoch sind über den Prüfmotor doch keine ein heitlichen Vorschläge vorhanden. Bekanntlich weist das Klopfverhalten der beiden Motorengattungen, des Otto- und des Dieselmotors, eine Gegensätzlichkeit auf, Übersichtstafel 1. Die wichtigsten Übersichtstafel  
Auch bei den Dieselkraft stoffen spielt die Untersuchung des Verbrennungsablaufes eine große Rolle, wobei das Klopfen ebenfalls diejenige; Eigenschaft der Kraftstoffe ist, die bei der Erzeugung vorwiegend zu berücksichtigen ist. Ein Maß für die Neigung des Kraftstoffes zum Klopfen ist der Zündverzug, d. i. die Zeit vom Ein spritzbeginn bis zum Zündbeginn.' Man hat versucht, analytische Meßverfahren zur Beurteilung der Dieselkraftstoffe heranzuziehen; die, wenn auch nicht zahlreichen, Abweichun gen von dem vorausgesetzten Zusammenhang machen aber die analytischen Bestimmungen — ebenso wie bei den Ottokraftstoffen — unsicher. Im Gegensatz zu den Klopfprüf-verfahren für Ottokraftstoffe, die allgemein anerkannt sind, geht man indessen bei der Untersuchung der Dieselkraftstoffe in bezug auf ihr Klopfverhalten weder in Deutschland noch im Ausland einheitlich vor. E s hat sich zwar eingebürgert, die Diesel kraftstoffe nach Cetenzahlen5) oder Cetanzahlen“) zu bewerten, jedoch sind über den Prüfmotor doch keine ein heitlichen Vorschläge vorhanden. Bekanntlich weist das Klopfverhalten der beiden Motorengattungen, des Otto- und des Dieselmotors, eine Gegensätzlichkeit auf, Übersichtstafel 1. Die wichtigsten Übersichtstafel  


1. V o r a u s s e t z u n g e n d e s K l o p f e n s i m D i e s e l - u n d O t t o m o t o r .
1. V o r a u s s e t z u n g e n d e s   K l o p f e n s i m   D i e s e l - u n d   O t t o m o t o r .


 
Betriebsbedingungen, die von der Seite des Motors auf das Klopfen Einfluß haben, sind: Verdichtung, Drosselung oder Überladung, Belastung, Drehzahl und Wärmezustand der Maschine. Man sieht z. B., daß das Klopfen beim Ottomotor mit dem Verdichtungsverhältnis, der Belastung sowie mit der Betriebserwärmung der Maschine zunimmt, während beim Dieselmotor das Gegenteil der Fall ist. Diese Gegensätzlichkeit kann man auch in der Darstel lung der gegenseitigen Abhängigkeit der Oktanzahl und der Cetenzahl zeigen 7). Die Oktanzahl hat um so höhere Werte, je niedriger die Cetenzahl ist, d. h. die Klopffestigkeit und Zündwilligkeit stehen im umgekehrten Verhältnis zueinander. Einer Oktanzahl von 100 entspricht eine Cetenzahl von etwa 20 und einer Oktanzahl null eine Cetenzahl von etwa 55.
 
Betriebsbedingungen, die von der Seite des Motors auf das
 
Klopfen Einfluß haben, sind: Verdichtung, Drosselung oder Überladung, Belastung, Drehzahl und Wärmezustand der Maschine. Man sieht z. B., daß das Klopfen beim Ottomotor mit dem Verdichtungsverhältnis, der Belastung sowie mit der Betriebserwärmung der Maschine zunimmt, während beim Dieselmotor das Gegenteil der Fall ist. Diese Gegensätzlichkeit kann man auch in der Darstel lung der gegenseitigen Abhängigkeit der Oktanzahl und der Cetenzahl zeigen 7).
 
Die Oktanzahl hat um so höhere
 
Werte, je niedriger die Cetenzahl ist, d. h. die Klopffestigkeit und Zündwilligkeit stehen im umgekehrten Verhältnis
 
zueinander. Einer Oktanzahl von 100 entspricht eine Cetenzahl von etwa 20 und einer Oktanzahl null eine Cetenzahl von etwa 55.


A u f b a u e in e s  P r ü f m o t o r s  f ü r  D ie s e l k ra ft s t o f fe
A u f b a u e in e s  P r ü f m o t o r s  f ü r  D ie s e l k ra ft s t o f fe


Bei der Untersuchung deutscher Dieselkraftstoffe, die bis in die Jahre 1929 und 1930 zurückgeht, benutzten wir bei der I. G. Farbenindustrie zunächst vorhandene lang-
Bei der Untersuchung deutscher Dieselkraftstoffe, die bis in die Jahre 1929 und 1930 zurückgeht, benutzten wir bei der I. G. Farbenindustrie zunächst vorhandene langsamlaufende Einzylindermotoren an denen die Messungen mit gewöhnlichen Federindikatoren durchgeführt wurden. Wir mußten aber bald'zu schnellaufenden Motoren über gehen, wofür wir eine sehr geeignete Bauart in dem ^stehenden Einzylindermotor der Motorenwerke Mannheim von etwa 11 Hubraum fanden. Dieser Motor wurde auf veränderliche Verdichtung umgebaut; Bild 14 und 15 zeigen seinen Aufbau, Bild 16 zeigt seine Ansicht8). Die Maschine läßt sich in einem Drehzahlbereich von etwa 500 bis 2 000 U/min verwenden und ihre Leistung beträgt bei 1 000 U/min rd. 3 kW. Auch hier sind die Kipp hebel für die Ventilbetätigung in gleicher Weise wie bei dem Prüfmotor für Leichtkraft stoffe gelagert. Der Zylinderkopf und die Zylinderbüchse werden durch Schnecke und Schneckenrad verschoben, so daß der Verbrennungsraum hierdurch verändert werden kann. Auf diese Weise läßt sich das  Verdichtungsverhältnis von etwa 8 : 1 bis 25 :1 verändern. Der Zylinderkopf mit der Laufbüchse ist durch eine als Handrad ausgebildete Gegenmutter kräftig gegen das Gehäuse abgestützt, so daß die Maschine völlig erschütterungs frei läuft. Auch hier wird Verdampfungskühlung angewen det; eine elektrische Heizvorrichtung dient zum uftvor wärmern Bei der Ausbildung des Verbrennungsraumes war anzustreben, daß er bei der Verdichtungsänderung annähernd ähnlich blieb. Eine strenge geometrische Ähnlichkeit läßt sich allerdings wegen des gleich bleibenden Zylinderdurchmessers nicht erzielen. Am einfach sten ist wohl die in Bild 17 dargestellte Form. Der Verdichtungsraum befindet sich in der


samlaufende Einzylindermotoren, an denen die Messungen mit gewöhnlichen Federindikatoren durchgeführt wurden. Wir mußten aber bald'zu schnellaufenden Motoren über
Hauptsache im Zylinderkopf und kann durch einen zusätzlichen Kolben verändert werden. Doch läßt dieser Zylinderkopf bei dem vorgesehenen kleinen Zylinderdurchmesser zu wenig Platz für die Ventile.


gehen, wofür wir eine sehr geeignete Bauart in dem ^stehenden Einzylindermotor der Motorenwerke Mannheim von etwa 11 Hubraum fanden. Dieser Motor wurde auf
Die besten Ergebnisse wurden mit der Brennraum gestaltung nach Bild 18 und 19 erhalten. Im Kolbenboden befindet sich eine annähernd halbkugelförmige Vertiefung, in die der Kraftstoff durch einen kegelförmigen Anschnitt


veränderliche Verdichtung umgebaut; Bild 14 und 15 zeigen seinen Aufbau, Bild 16 zeigt seine Ansicht8). Die
seitwärts von der Zylinderwand her eingespritzt wird. Die verwendete Einlochdüse spritzt mit einer Neigung von 12 ° gegen den Kolbenboden. Die Länge des Kegel einschnittes ist so groß, daß der Kraftstoffstrahl gut zer


Maschine läßt sich in einem Drehzahlbereich von etwa 500 bis 2 000 U/min verwenden und ihre Leistung beträgt bei 1 000 U/min rd. 3 kW.
stäuben kann. Die Kugelförm des Verbrennungsraumes wurde als Idealform angestrebt, weil hierbei der kleinste Durchbrennweg erzielt wird. Es wurde unmittelbare Einspritzung gewählt, da sie klar und deutlich Unterschiede der untersuchten Kraftstoffe in ihrem Verbrennungsverlauf erkennen läßt. Ein Vorkammermotor z. B. wäre infolge seiner Unempfindlichkeit gegenüber Kraftstoffänderungen weniger geeignet.


Auch hier sind die Kipp hebel für die Ventilbetätigung in gleicher Weise wie bei dem Prüfmotor für Leichtkraft stoffe gelagert. Der Zylinderkopf und die Zylinderbüchse


werden durch Schnecke und Schneckenrad verschoben, so daß der Verbrennungsraum hierdurch verändert werden kann. Auf diese Weise läßt sich das  Verdichtungsverhältnis von etwa 8 : 1 bis 25 :1 verändern. Der Zylinderkopf mit der Laufbüchse ist durch eine als Handrad ausgebildete Gegenmutter kräftig gegen das Gehäuse abgestützt, so daß die Maschine völlig erschütterungs frei läuft. Auch hier wird Verdampfungskühlung angewen det; eine elektrische Heizvorrichtung dient zum uftvor wärmern Bei der Ausbildung des Verbrennungsraumes war anzu
'''B e s t i m m u n g    d e r  C e t e n z a h l'''


streben, daß er bei der Verdichtungsänderung annähernd ähnlich blieb. Eine strenge geometrische Ähnlichkeit läßt sich allerdings wegen des gleich bleibenden Zylinderdurchmessers nicht erzielen. Am einfach sten ist wohl die in Bild 17 dargestellte Form. Der Verdichtungsraum befindet sich in der
Bei der Bestimmung des Zündverzuges wird die Verdichtung solange geändert, bis der Zündverzug einen be stimmten Wert erreicht hat, den wir auf 180 Kurbelwinkel festgelegt haben. Die Einspritzung geschieht dabei stets 20° Kurbelwinkel vor dem oberen Totpunkt. Durch Vergleich mit Ceten als zündwilligem und Alpha-Methylnaphthalin als stark klopfendem Be-zugskraftstoff läßt sich so die Cetenzahl des untersuchten Kraftstoffes bestimmen.


Hauptsache im Zylinderkopf und kann durch einen
Vielfach wird der Zündverzug auch bei un veränderlicher Verdichtung gemessen. Die Beziehungen zwischen bei den Verfahren geben Bild 20 und 21 wieder. Die Cetenzahl ist hier einmal in Abhängigkeit vom Verdichtungsverhältnis bei unveränder tem Zündverzug und das andere Mal in Abhängig keit vom Zündverzug bei gleichbleibendem Verdichtungsverhältnis dar gestellt. Nach beiden Verfahren wurden für die gleichen Kraftstoffe die gleichen Cetenzahlen ermittelt. Der Nachteil des Verfahrens mit gleichbleibender Verdichtung liegt jedoch darin, daß der Meßbereich nur gering ist; z. B. liegt er bei dem Verdichtungsverhältnis 16 nur zwischen den Cetenzahlen 25 und 60, Bild 21. Bei Cetenzahlen unter 25 läuft die Maschine bei dieser Verdichtung nicht mehr ein wandfrei, und bei höheren Cetenzahlen als 60 ist kein meßbarer Unterschied im Zündverzug mehr vorhanden. Auf Grund dieser Erkenntnis wurde das Verfahren der Messung bei gleich bleibendem Zündverzug für die weiteren Untersuchungen angewendet.
 
zusätzlichen Kolben verändert werden. Doch läßt dieser
 
Zylinderkopf bei dem vorgesehenen kleinen Zylinder
 
durchmesser zu wenig Platz für die Ventile.
 
Die besten Ergebnisse wurden mit der Brennraum
 
gestaltung nach Bild 18 und 19 erhalten. Im Kolbenboden
 
befindet sich eine annähernd halbkugelförmige Vertiefung,
 
in die der Kraftstoff durch einen kegelförmigen Anschnitt
 
seitwärts von der Zylinderwand her eingespritzt wird.
 
Die verwendete Einlochdüse spritzt mit einer Neigung
 
von 12 ° gegen den Kolbenboden. Die Länge des Kegel
 
einschnittes ist so groß, daß der Kraftstoffstrahl gut zer
 
stäuben kann. Die Kugelförm des Verbrennungsraumes
 
wurde als Idealform angestrebt, weil hierbei der kleinste
 
Durchbrennweg erzielt wird.
 
Es wurde unmittelbare Einspritzung gewählt, da sie
 
klar und deutlich Unterschiede der untersuchten K raft
 
stoffe in ihrem Verbrennungsverlauf erkennen läßt. Ein
 
Vorkammermotor z. B. wäre infolge seiner Unempfindlich
 
keit gegenüber Kraftstoffänderungen weniger geeignet.
 
 
B e s t im m u n g d e r C e te n z a h l
 
Bei der Bestimmung des Zündverzuges wird die Ver
 
dichtung solange geändert, bis der Zündverzug einen be
 
stimmten Wert erreicht
 
hat, den wir auf 1 8 0
 
Kurbelwinkel festgelegt
 
haben. Die Einspritzung
 
geschieht dabei stets 20°
 
Kurbelwinkel vor dem
 
oberen Totpunkt. Durch
 
Vergleich mit Ceten als
 
zündwilligem und Alpha-
 
Methylnaphthalin als
 
stark klopfendem Be-
 
zugskraftstoff läßt sich
 
so die Cetenzahl des
 
untersuchten Kraftstof
 
fes bestimmen.
 
Vielfach wird der
 
Zündverzug auch bei un
 
veränderlicher Verdich
 
tung gemessen. Die Be
 
ziehungen zwischen bei
 
den Verfahren geben
 
Bild 20 und 21 wieder.
 
Die Cetenzahl ist hier
 
einmal in Abhängigkeit
 
vom Verdichtungsver
 
hältnis bei unveränder
 
tem Zündverzug und das
 
andere Mal in Abhängig
 
keit vom Zündverzug bei
 
gleichbleibendem Ver
 
dichtungsverhältnis dar
 
gestellt. Nach beiden
 
Verfahren wurden für
 
die gleichen Kraftstoffe
 
die gleichen Cetenzahlen
 
ermittelt. Der Nachteil
 
des Verfahrens mit
 
gleichbleibender Verdich
 
tung liegt jedoch darin,
 
daß der Meßbereich nur
 
gering ist; z. B. liegt er
 
bei dem Verdichtungs
 
verhältnis 16 nur zwi
 
schen den Cetenzahlen 25
 
und 60, Bild 21. Bei Ceten
 
zahlen unter 25 läuft die
 
Maschine bei dieser Ver
 
dichtung nicht mehr ein
 
wandfrei, und bei höhe-
 
ren Cetenzahlen als 60 ist
 
kein meßbarer Unterschied im Zündverzug mehr vorhanden.
 
Auf Grund dieser
 
Erkenntnis wurde das Verfahren der Messung bei gleich
 
bleibendem Zündverzug für die weiteren Untersuchungen
 
angewendet.


'''E r g e b n i s s e d e s  P r ü f - D ie s e l m o t o r s'''
'''E r g e b n i s s e d e s  P r ü f - D ie s e l m o t o r s'''


Bild 22 gibt Eichkurven des I. G.-Prüf-Dieselmotors wieder. Als Eichstoffe dienten — an Stelle von Ceten und Alpha-Methylnaphthalin — ein badischer Dieselkraftstoff und ein Steinkohlenmittelöl. E s ergibt sich dabei, daß zwischen der Verdichtungsveränderung, ausgedrückt in mm Zylinderkopfverschiebung, und der Änderung der Cetenzahl praktisch eine geradlinige Abhängigkeit besteht. Infolge äußerer Einflüsse — Verkokung der Düse, Hängenbleiben der Nadel, Änderung des Wärmezustandes der Maschine — muß die Eichung wiederholt werden. Es ist bei uns Regel, daß vor und nach jeder Versuchsreihe diese Beziehung nachgeprüft wird. Dabei hat sich heraus gestellt, daß bei einer Veränderung des Zusammenhanges sich die Verdichtungslinie parallel zu sich verschiebt. Es genügt daher in der Regel, nur einen oder zwei Punkte dieser Geraden zu bestimmen, wodurch das Meßverfahren sehr vereinfacht wird und an Genauigkeit gewinnt. Während an der oberen Grenze die Dieselkraftstoffe in allen praktisch
Bild 22 gibt Eichkurven des I. G.-Prüf-Dieselmotors wieder. Als Eichstoffe dienten — an Stelle von Ceten und Alpha-Methylnaphthalin — ein badischer Dieselkraftstoff und ein Steinkohlenmittelöl. E s ergibt sich dabei, daß zwischen der Verdichtungsveränderung, ausgedrückt in mm Zylinderkopfverschiebung, und der Änderung der Cetenzahl praktisch eine geradlinige Abhängigkeit besteht. Infolge äußerer Einflüsse — Verkokung der Düse, Hängenbleiben der Nadel, Änderung des Wärmezustandes der Maschine — muß die Eichung wiederholt werden. Es ist bei uns Regel, daß vor und nach jeder Versuchsreihe diese Beziehung nachgeprüft wird. Dabei hat sich heraus gestellt, daß bei einer Veränderung des Zusammenhanges sich die Verdichtungslinie parallel zu sich verschiebt. Es genügt daher in der Regel, nur einen oder zwei Punkte dieser Geraden zu bestimmen, wodurch das Meßverfahren sehr vereinfacht wird und an Genauigkeit gewinnt. Während an der oberen Grenze die Dieselkraftstoffe in allen praktisch vorkommenden Fällen unmittelbar gemessen werden kömien, geht die untere Grenze für die unmittel bare Messung etwa bis zu der Cetenzahl 10. Kraftstoffe mit noch niedrigerer Cetenzahl können durch Mischungen bestimmt werden.


vorkommenden Fällen unmittelbar gemessen werden kömien, geht die untere Grenze für die unmittel bare Messung etwa bis zu der Cetenzahl 10. Kraftstoffe mit noch niedrigerer Cetenzahl können durch Mischungen bestimmt werden.
Bild 23 gibt die Ergebnisse von Vergleichsversuchen wieder, die am I. G.-Prüf-Dieselmotor und am CFR-Motor 8) nach dem Verfahren mit veränderlicher Verdichtung durchgeführt wurden. Die größten Abweichungen betragen 5 Cetenzahl-Einheiten. Die Übereinstimmung ist als gut zu bezeichnen, wenn man beachtet, daß die Motoren von verschiedener Bauart und nicht aufeinander abgestimmt sind.
 
Bild 23 gibt die Ergebnisse von Vergleichsversuchen
 
wieder, die am I. G.-Prüf-Dieselmotor und am CFR-
 
Motor8'1) nach dem Verfahren mit veränderlicher Verdich
 
tung durchgeführt wurden. Die größten Abweichungen
 
betragen 5 Cetenzahl-Einheiten. Die Übereinstimmung ist
 
als gut zu bezeichnen, wenn man beachtet, daß die Mo
 
toren von verschiedener Bauart und nicht aufeinander
 
abgestimmt sind.


'''M e s s u n g d e s Z ü n d v e r z u g s'''
'''M e s s u n g d e s Z ü n d v e r z u g s'''


Für die Messung des Zündverzugs sind verschiedene
Für die Messung des Zündverzugs sind verschiedene Verfahren anwendbar, Bild 24 bis 26. So wird an dem Prüfmotor des Forschungsinstituts für Kraftfahrwesen und Fahrzeugmotoren an der Technischen Hochschule Stuttgart 9) der Einspritzbeginn und der Zündbeginn durch je einen Quarzgeber bestimmt, die einen Stromkreis steuern, Bild 24. Die Dauer der Stromeinschaltung entspricht dem Zündverzug und wird durch ein Galvanometer angezeigt. An Stelle des Galvanometers läßt sich zur Messung des Zündverzugs auch eine auf dem Schwung rad angeordnete Glimmlampe verwenden. Die Deutsche Versuchsanstalt für Luftfahrt (DVL)
 
Verfahren anwendbar, Bild 24 bis 26. So wird an dem
 
Prüfmotor des Forschungsinstituts für Kraftfahrwesen
 
und Fahrzeugmotoren an der Technischen Hochschule
 
Stuttgart9) der Einspritzbeginn und der Zündbeginn
 
durch je einen Quarzgeber bestimmt, die einen Stromkreis
 
steuern, Bild 24. Die Dauer der Stromeinschaltung ent
 
spricht dem Zündverzug und wird durch ein Galvanometer
 
angezeigt. An Stelle des Galvanometers läßt sich zur
 
Messung des Zündverzugs auch eine auf dem Schwung
 
rad angeordnete Glimmlampe verwenden.
 
Die Deutsche Versuchsanstalt für Luftfahrt (DVL)


gebraucht für Zündverzugmessungen den von ihr ent
gebraucht für Zündverzugmessungen den von ihr ent
Line 539: Line 130:
In dem mittleren Teil der Leitung, der beiden Stromkreisen gemeinsam ist, liegt eine Glimm lampe, die auf dem Schwung rad angeordnet ist. In dem ersten Stromkreis, dem linken in Bild 26, befindet sich der Einspritzkontakt. Wird nun die Brennstoffnadel angehoben, so leuchtet die Glimmlampe auf. Am Ende des Zündverzugs, also bei Zündbeginn, wird durch die heißen Verbrennungsgase die Ionisierungsstrecke im zweiten (rechten) Stromkreis leitend, so daß die Spannung in dem gemeinsamen Teil der Leitung wegen der Gegenschaltung der Stromquellen ausgeglichen wird und die Glimmlampe erlischt.  
In dem mittleren Teil der Leitung, der beiden Stromkreisen gemeinsam ist, liegt eine Glimm lampe, die auf dem Schwung rad angeordnet ist. In dem ersten Stromkreis, dem linken in Bild 26, befindet sich der Einspritzkontakt. Wird nun die Brennstoffnadel angehoben, so leuchtet die Glimmlampe auf. Am Ende des Zündverzugs, also bei Zündbeginn, wird durch die heißen Verbrennungsgase die Ionisierungsstrecke im zweiten (rechten) Stromkreis leitend, so daß die Spannung in dem gemeinsamen Teil der Leitung wegen der Gegenschaltung der Stromquellen ausgeglichen wird und die Glimmlampe erlischt.  


'''E r m i t t l u n g d e s  Z ü n d v e r z u g s a u s d e m  D r u c k v e r l a u f'''Außer dem Zündverzug sind
'''E r m i t t l u n g d e s  Z ü n d v e r z u g s a u s d e m  D r u c k v e r l a u f'''


jedoch zur Beurteilung eines
Außer dem Zündverzug sind jedoch zur Beurteilung eines


Dieselkraftstoffes auch der
Dieselkraftstoffes auch der Druckanstieg und der Ver


Druckanstieg und der Ver
brennungshöchstdruck von Bedeutung. Hierzu ist es not
 
brennungshöchstdruck von Be
 
deutung. Hierzu ist es not


wendig, den gesamten Druckverlauf aufzuzeichnen, wie
wendig, den gesamten Druckverlauf aufzuzeichnen, wie
Line 587: Line 174:
Bei den im Handel befindlichen Indikatoren wird für die waagerechte Seitenablenkung des Strahls vielfach ein
Bei den im Handel befindlichen Indikatoren wird für die waagerechte Seitenablenkung des Strahls vielfach ein


Kippschwinggerät verwendet, wobei die Druckvorgänge
Kippschwinggerät verwendet, wobei die Druckvorgänge in Abhängigkeit von der Zeit aufgezeichnet werden. Man versucht dabei, dieses Gerät mit der Hand so einzuregeln, das es synchron mit dem Motor läuft. Dies läßt sich nur schwer erreichen, so daß das Diagramm auf der Bild fläche wandert, was die Auswertung erschwert. Wir haben ein besonderes Seitenablenkgerät entwickelt, das unmittelbar mit der Maschine gekuppelt ist. Dieses zeich net den Druck in Abhängigkeit vom Kurbelwinkel auf. Da der Kurbelwinkel der Zeit praktisch verhältnisgleich ist, erhalten wir hier in einfacher Weise ein Zeit-Druck-Diagramm; es hat zudem noch den großen Vorteil, daß es auf der Röhre nicht wandert. In einem Gehäuse aus Isolierstoff, das mit der Kurbelwellen-Drehzahl umläuft, befindet sich ein Wasser ring, der als Widerstand und Spannungsteiler verwendet wird und sich m it' dem Gehäuse infolge der Fliehkraft dreht, Bild 27. Durch zwei Schleifringe am Gehäuse wird dem Wasserring eine Gleichspannung zugeführt. Die Zu führungselektroden am Wasserring sind genau um 180° versetzt, wobei der Totpunkt in die Mitte des aufzunehmenden
 
in Abhängigkeit von der Zeit aufgezeichnet werden. Man
 
versucht dabei, dieses Gerät mit der Hand so einzuregeln,
 
das es synchron mit dem Motor läuft. Dies läßt sich nur
 
schwer erreichen, so daß das Diagramm auf der Bild
 
fläche wandert, was die Auswertung erschwert. Wir
 
haben ein besonderes Seitenablenkgerät entwickelt, das
 
unmittelbar mit der Maschine gekuppelt ist. Dieses zeich
 
net den Druck in Abhängigkeit vom Kurbelwinkel auf. Da
 
der Kurbelwinkel der Zeit praktisch verhältnisgleich ist,
 
erhalten wir hier in einfacher Weise ein Zeit-Druck-
 
Diagramm; es hat zudem noch den großen Vorteil, daß
 
es auf der Röhre nicht wandert.
 
In einem Gehäuse aus Isolierstoff, das mit der
 
Kurbelwellen-Drehzahl umläuft, befindet sich ein Wasser
 
ring, der als Widerstand und Spannungsteiler verwendet
 
wird und sich m it' dem Gehäuse infolge der Fliehkraft
 
dreht, Bild 27. Durch zwei Schleifringe am Gehäuse wird
 
dem Wasserring eine Gleichspannung zugeführt. Die Zu
 
führungselektroden am Wasserring sind genau um 180 °
 
versetzt, wobei der Totpunkt in die Mitte des aufzunehmenden
 
Diagramms, Bild 28, zu liegen kommt. Der
 
Abgriff der Spannung für die Seitenablenkung geschieht
 
durch einen Finger, der fest angeordnet ist und im
 
Wasserring schleift. Wir erhalten so den gesamten
 
Druckverlauf gleichmäßig über dem Kurbelwinkel. Bei
 
diesem Diagramm interessieren uns aber vorzugsweise
 
die Vorgänge bei der Verbrennung um den oberen Tot
 
punkt herum, die etwa einen Kurbelwinkel von 45 ° ein
 
nehmen. In einfacher Weise lassen sich nun diese Vor
 
gänge auf dem Schirm der Braunschen Röhre auf die
 
ganze Diagrammlänge auseinanderziehen. Zu diesem
 
Zweck werden die Elektroden am Wasserring um 45 °
 
gegeneinander versetzt, Bild 29. Man erhält dann das
 
Diagramm, Bild 30, in dem man die VerbrennungsVor
 
gänge genau verfolgen kann.
 
In ähnlicher Weise haben wir ein Seitenablenkgerät
 
entwickelt, mit dem man das Druck-Weg-Diagramm zur
 
Ermittlung der indizierten Leistung aufzeichnen kann,
 
Bild 31 und 32. Bei dieser Anordnung stellt man ein
 
Gleichspannungsfeld zwischen zwei Metallplatten her,
 
zwischen denen sich Wasser befindet. Darin läuft ein
 
kleiner Metallstift als Spannungsabnehmer um. Bei Ver
 
wendung von vollkommen ebenen Platten, die parallel zu
 
einander angeordnet sind, hat die zwischen den Platten
 
und dem Stift auftretende Spannung einen reinen Sinus
 
verlauf. In diesem Fall würde die Seitenablenkung einer
 
unendlich langen Schubstange entsprechen. Bei endlicher
 
Schubstangenlänge kann man die Abweichung von der
 
Sinuslinie dadurch erhalten, daß man die Platten krümmt.
 
Anstatt einer Flüssigkeit kann ein fester Widerstand Ver
 
wendung finden, auf dem ein Stift schleift.
 
D r u c k a n s t ie g u n d V e r b r e n n u n g s h ö c h s t d r u c k
 
Der Verbrennungshöchstdruck und der Druckanstieg
 
d p ! d p in at/° Kurbelwinkel sind für die Bewertung eines
 
Kraftstoffes sehr wichtig, stellen doch beide ein Maß für
 
die Beanspruchung des Dieselmotor-Triebwerkes dar.
 
Hoher Verbrennungsdruck und steiler Druckanstieg er
 
geben harten Gang des Motors. Der Höchstdruck wird
 
unmittelbar aus den> Diagramm abgelesen, und zur
 
Messung des Druckanstieges dient ein Neigungsmesser.
 
Damit hat man die wichtigsten Größen des Verbrennungs
 
vorganges bestimmt.
 
Der Druckanstieg wird vielfach auch als d p /d t , also
 
nach der Zeit, in at/s angegeben. Dieser Wert ist inso
 
fern nicht ohne weiteres anwendbar, als darin die Dreh
 
zahl nicht erscheint. In Bild 33 ist in Abhängigkeit von
 
der Motordrehzahl der Druckanstieg dpld<p für verschie
 
dene Werte von dp/dt dargestellt. In Bild 34 erkennt
 
man, wie sich bei unveränderlichem Druckanstieg d p i d t
 
der W ert dp/dp, mit dem Kurbelwinkel also, mit der
 
Motordrehzahl ändert. Bei niedrigen Drehzahlen ist ein
 
stärkerer Anstieg vorhanden als bei hohen. Zweck
 
mäßiger ist es daher, den W ert dp/dp als Maß für den
 
Druckanstieg zu nehmen.
 
Wie sich die Abhängigkeit von verschiedenen K raft
 
stoffen hinsichtlich des Druckanstieges und des Höchst
 
druckes auswirkt, zeigt Bild 35. E s sind hier Kraftstoffe
 
verschiedener A rt untersucht, deren Getenzahlen zwischen
 
25 und 60 liegen. Man sieht, daß der dp/dp-W ert sowie
 
der Höchstdruck um so höher sind, je niedriger die Ceten-
 
zahl ist, was im allgemeinen auch zu erwarten war.


Während aber der Höchstdruck nahezu geradlinig mit
Diagramms, Bild 28, zu liegen kommt. Der Abgriff der Spannung für die Seitenablenkung geschieht durch einen Finger, der fest angeordnet ist und im Wasserring schleift. Wir erhalten so den gesamten Druckverlauf gleichmäßig über dem Kurbelwinkel. Bei diesem Diagramm interessieren uns aber vorzugsweise die Vorgänge bei der Verbrennung um den oberen Totpunkt herum, die etwa einen Kurbelwinkel von 45 ° ein nehmen. In einfacher Weise lassen sich nun diese Vor gänge auf dem Schirm der Braunschen Röhre auf die ganze Diagrammlänge auseinanderziehen. Zu diesem Zweck werden die Elektroden am Wasserring um 45° gegeneinander versetzt, Bild 29. Man erhält dann das Diagramm, Bild 30, in dem man die Verbrennungs Vorgänge genau verfolgen kann. In ähnlicher Weise haben wir ein Seitenablenkgerät entwickelt, mit dem man das Druck-Weg-Diagramm zur Ermittlung der indizierten Leistung aufzeichnen kann, Bild 31 und 32. Bei dieser Anordnung stellt man ein Gleichspannungsfeld zwischen zwei Metallplatten her, zwischen denen sich Wasser befindet. Darin läuft ein kleiner Metallstift als Spannungsabnehmer um. Bei Verwendung von vollkommen ebenen Platten, die parallel zu einander angeordnet sind, hat die zwischen den Platten und dem Stift auftretende Spannung einen reinen Sinus verlauf. In diesem Fall würde die Seitenablenkung einer unendlich langen Schubstange entsprechen. Bei endlicher Schubstangenlänge kann man die Abweichung von der Sinuslinie dadurch erhalten, daß man die Platten krümmt. Anstatt einer Flüssigkeit kann ein fester Widerstand Verwendung finden, auf dem ein Stift schleift.


abnehmender Cetenzahl ansteigt, wird die Zunahme des
'''D r u c k a n s t i e g u n d  V e r b r e n n u n g s h ö c h s t d r u c k'''


W ertes-dp/dp bei Cetenzahlen unter etwa 35 in schnell
Der Verbrennungshöchstdruck und der Druckanstieg d p ! d p in at/° Kurbelwinkel sind für die Bewertung eines Kraftstoffes sehr wichtig, stellen doch beide ein Maß für die Beanspruchung des Dieselmotor-Triebwerkes dar. Hoher Verbrennungsdruck und steiler Druckanstieg er geben harten Gang des Motors. Der Höchstdruck wird unmittelbar aus den> Diagramm abgelesen, und zur Messung des Druckanstieges dient ein Neigungsmesser. Damit hat man die wichtigsten Größen des Verbrennungsvorganges bestimmt. Der Druckanstieg wird vielfach auch als d p /d t , also nach der Zeit, in at/s angegeben. Dieser Wert ist inso fern nicht ohne weiteres anwendbar, als darin die Drehzahl nicht erscheint. In Bild 33 ist in Abhängigkeit von der Motordrehzahl der Druckanstieg dpld<p für verschie dene Werte von dp/dt dargestellt. In Bild 34 erkennt man, wie sich bei unveränderlichem Druckanstieg d p i d t der Wert dp/dp, mit dem Kurbelwinkel also, mit der Motordrehzahl ändert. Bei niedrigen Drehzahlen ist ein stärkerer Anstieg vorhanden als bei hohen. Zweck mäßiger ist es daher, den W ert dp/dp als Maß für den Druckanstieg zu nehmen. Wie sich die Abhängigkeit von verschiedenen Kraftstoffen hinsichtlich des Druckanstieges und des Höchst druckes auswirkt, zeigt Bild 35. E s sind hier Kraftstoffe verschiedener A rt untersucht, deren Getenzahlen zwischen 25 und 60 liegen. Man sieht, daß der dp/dp-W ert sowie der Höchstdruck um so höher sind, je niedriger die Ceten-zahl ist, was im allgemeinen auch zu erwarten war. Während aber der Höchstdruck nahezu geradlinig mit abnehmender Cetenzahl ansteigt, wird die Zunahme des Wertes-dp/dp bei Cetenzahlen unter etwa 35 in schnell wachsendem Maße steiler. B 4956


wachsendem Maße steiler. B 4956




1) Vorgetragen vor der Automobil- und Flugtechnischen Gesellschaft Im VDI in Stuttgart.
1) Vorgetragen vor der Automobil- und Flugtechnischen Gesellschaft Im VDI in Stuttgart.

Revision as of 19:49, 26 April 2023

Prüfmotoren zur Klopfwertbestimmung von Kraftstoffen

(Test engines for determining the knock value of fuels)

Von Prof. Dr.-Ing. W. Wilke VDI, Ludwigshafen a. Rh.1)


Als Maß für die Klopffestigkeit eines Ottokraftstoffs wird allgemein die Oktanzahl benutzt. Sie setzt wegen ihrer Abhängigkeit von der Motorbauart die einheitliche Festlegung eines Prüfmotors voraus.

Bisher diente als solcher allgemein der in den Vereinigten Staaten von Amerika entwickelte sog. CFR-Motor. Neuerdings hat der Reichs- und Preußische Verkehrsminister einen von der I. G. Farben-industrie entwickelten Prüfmotor als deutschen Prüfmotor für Ottokraftstoffe anerkannt. Sein Aufbau und seine Egebnisse werden nachstehend erstmalig mitgeteilt.

Für die Bewertung der motorischen Eignung der Dieselkraftstoffe hat sich als Maßstab die Cetenzahl neuerdings die Cetanzahl — weitgehend eingeführt, die die Zündwilligkeit des Kraftstoffs im D ieselm otor anzeigt. Flingegen ist das Meßverfahren zu ihrer Bestimmung noch In der Entwicklung begriffen. A m meisten zur Anwendung kommt das Zündverzugverfahren. Die Erfahrungen der I. G. Farbenindustrie bei der Entwicklung und Untersuchung eines Prüf-Diesel-motors dürften auch hier für die anzustrebende Vereinheitlichung der Prüfverfahren und -motoren wertvolle Unterlagen abgeben.



Ottokraftstoffe Entwicklung der Klopfmaßstäbe

Bild 1. Entwicklung der Klopfmaßstäbe für Ottokraftstoffe


Als im Jahre 1924 die I. G. Farbenindustrie mit der praktischen Erprobung des von ihr gefundenen Gegen-klopfmittels Eisenkarbonyl begann, war es notwendig, das verschiedenartige Klopfverhalten der einzelnen Kraftstoffe in eineri Maßstab einzuordnen. Die Einflüsse auf das Klopfverhalten waren zu jener Zeit noch sehr wenig bekannt, ebensowenig gab es damals in Deutschland Klopfprüfmotoren oder gar besonders ausgearbeitete Prüfverfahren. Nur wenige Stellen befaßten sich mit der Klopfwertprüfung, und jede einzelne hatte ihren eigenen Motor mit dazugehörigem Untersuchungsverfahren. Dieses bunte Bild spiegelt sich schon in der viel-seitigen Benennung des Klopfens wieder: Klopfen, Detonieren, Pinken, Klingeln, Boxen usw. waren damals die gleichzeitig gebrauchten Ausdrücke für ein und dieselbe Erscheinung.

Die Entwicklungsgeschichte des KlopfprüfStandes der I. G. ist zugleich die der Klopfmessung in Deutschland. Wir begannen unsere Versuche mit einem Vierzylinder-Benz-Motor. An dieser Maschine wurde das Verdichtungs verhältnis so eingestellt, daß bei gewöhnlichem Betrieb das damals übliche Benzin klopfte. Dieses Klopfen konnte mit Eisenkarbonyl als Zusatz beseitigt werden, und die hierzu benötigte Menge war ein Maßstab für das Klopfen. Ein Benzin war also um so klopffester, je weniger Eisen karbonyl bis zum Verschwinden des Klopfens gebraucht wurde. Diese erste Klopfskale ist, zusammen mit den später entwickelten Klopfmaßstäben, in Bild 1 dargestellt und umfaßte naturgemäß nur einen verhältnismäßig engen Meßbereich. Schon damals wurde ein Vergleichsbenzin

bei den Untersuchungen verwendet, und es war eine müh selige Arbeit, nach dem Aufbrauchen eines Vorrats ein zweites geeignetes Vergleichsbenzin herzustellen. Die Zusammenarbeit mit der amerikanischen Standard Oil Co. brachte es mit sich, daß deren Klopfwerte in die I. G.-Werte zu übersetzen waren, was sehr umständliche und zeitraubende Vergleichsversuche als Voraussetzung hatte. Bei der Skale der Standard Oil Co. wurde als Vergleichskraftstoff ein Eichbenzin verwendet, dem bestimmte Mengen Bleitetraäthyl zugesetzt wurden. Man erkennt, daß z. B. der Klopfwert 15 der I. G.-Skale den gleichen W ert hatte wie etwa der von 4 der Standard-Skale. Die internationale Einführung der Oktan-Skale, die seit 1932 angewandt wird, war ein wichtiger Schritt zur Vereinheitlichung der Klopfprüfverfahren. Jetzt endlich konnte überall mit genau den gleichen Stoffen als Vergleichsgrundlage gemessen werden, und deren Ergänzung stellt keine Aufgabe mehr dar, weil sie als chemisch reine Stoffe immer und überall in gleicher Beschaffenheit

hergestellt werden können. Diese Eichstoffe sind das Normal-Heptan, ein unverzweigter Kohlenwasserstoff, und ein iso-Oktan, das 2-2-4-Trimethyl-Pentan, ein verzweigter Kohlenwasserstoff5). Das Heptan ist der stark klopfende, das Oktan der klopffeste Kraftstoff. Der Gehalt an Oktan in der Mischung, d. i. die Oktanzahl, gibt den Klopfwert an. Diese Kohlenwasserstoffe, die herzustellen anfangs außerordentliche Schwierigkeiten machte, werden heute bei der I. G. synthetisch erzeugt. Wie sich diese internationale Skale zu den beiden anderen schon erwähnten Skalen verhält, ist in Bild 1 ebenfalls dargestellt. Zugleich ist angegeben, welche Klopffestigkeit unsere heute üblichen Kraftstoffe, wie sie an den Zapfstellen erhältlich sind, haben.


  • ) Vgl. W. Gießmann, Z. V D I, Bd. 80 (1936) S. 833.
  • ) Vgl. A . v. Phüippoeüh, D VL-Jahrbuch, München u. Berlin 1931.


E n t w i c k l u n g d e r P r ü f m o t o r e n

So bunt wie die angewandten Prüfverfahren und Klopfmaßstäbe, so mannigfaltig waren früher auch die Prüfmotoren. Die Mängel, die den Mehrzylindermotor zur Klopfwertbestimmung wenig geeignet machen, wurden schon frühzeitig erkannt, und wir gingen bald zur Ver wendung von kleinen handlichen Einzylinder-Motoren über. Da solche in Deutschland nicht vorhanden waren, stellten wir diese seit dem Jahre 1929 selbst her, und zwar zunächst mit feststehendem, von 1930 an mit veränder lichem Verdichtungsverhältnis. Mit diesen Prüfmotoren beteiligten wir uns an den ersten deutschen Vergleichs versuchen 5)

Entscheidend beeinflußt wurde das Klopfprüfwesen durch den im Jahre 1932 von dem amerikanischen Cooperative Fuel Research Committee eingeführten CFR-Motor 2), der sich rasch als internationaler Einheitsmotor zur Klopfwertbestimmung entwickelte. Alle anderen Prüfmotoren traten diesem Gerät gegenüber in den Hinter grund, und bald dienten bei der internationalen Verständigung über das klopfverhalten ausschließlich Werte, die an diesem Motor und mit der Oktanzahl als Maßstab ermittelt worden waren.

Vergleichsversuche zwischen dem I. G.-Motor und dem CFR-Motor zeigten, daß es nur geringer Änderungen in den Betriebsbedingungen des I. G.-Motors bedurfte, um praktisch die gleichen Meßergebnisse wie am CFR-Motor zu erzielen. Danach arbeiteten wir jahrelang mit diesem Motor, von dem wir im ganzen vier Stück selbst an gefertigt hatten, zu unserer vollen Zufriedenheit.

Die durch Vereinheitlichung vom Prüfmotor und Prüfverfahren erzielte Übereinstimmung in den Meß werten von verschiedenen Prüfständen ist heute sehr befriedigend. In Bild 2 und 3 sind zwei Versuchsreihen dargestellt, die auf Anregung des Deutschen Verbandes für die Materialprüfungen der Technik vor und nach der Vereinheitlichung durchgeführt sind. Der große Fortschritt in der Genauigkeit der Klopfwertbestimmung während dieser drei Jahre ist klar ersichtlich, sinkt doch die Streuung — deren Höchstwert 27 Einheiten der Oktanzahl erreicht — von 13,3 auf 2,4 im Mittel aller Versuche.

Als es die Devisenlage des Reiches erschwerte, weitere CFR-Motoren ein zuführen, trat im Jahre 1936 der Deutsche Verband für die Materialprüfungen der Technik mit der Bitte an die I. G. heran, ihre Erfahrungen im Bau von Klopfprüfständen der Allgemeinheit zur Verfügung zustellen. Wir kamen diesem Wunsch nach und übergaben unsere Zeichnungen der Firm a Daimler-Benz, Werk Mannheim, die nunmehr die Geräte unter der Bezeichnung „I. G.-Prüf-motor“ anfertigt und vertreibt. Um den Anschluß an die CFR-Werte des Auslandes zu sichern, werden die Meßwerte eines jeden einzelnen Prüfmotors vor seiner Ablieferung gründlich geprüft.


Aufbau des I. G . - Prüfmotors für Otto kraftstoffe

Bild 4 und 5 zeigen den Prüfmotor im Schnitt, Bild 6 zeigt ihn in der Ansicht. Der Unterteil des ver schiebbaren Zylinders hat ein Flach gewinde. Die dazugehörige Mutter ist als Schneckenrad ausgebildet, in das eine Schnecke eingreift. Durch Drehen der Schnecke kann das Verdichtungsverhältnis von 4:1 bis 15:1 geändert werden. Den jeweiligen Stand des Verdichtungsverhältnisses zeigt die Trommel skale c an. Neben ihr ist eine Oktanskale, auf der an näherungsweise der Klopfwert der Probe nach dem CFR-Motor-Verfahren2) abgelesen werden kann. In dem abnehmbaren Zylinderkopf befinden sich die hängenden, von gleicharmigen Kipphebeln gesteuerten Ventile und der Springstift- oder Sprungstabindikator2) zum Messen der Klopfstärke. Die Änderung des Ventilspiels bei der Verschiebung des Zylinders wird dadurch ausgeglichen, daß der Drehpunkt der gleicharmigen Kipphebel die halbe Verschiebung mitmacht. Die in dem Kühlmantel eingesetzte „nasse“ Laufbüchse aus Grauguß ist auswechselbar. Der Kolben ist aus Leichtmetall; Pleuelstange und Hirth-Kurbelwelle 3) laufen in Rollen- bzw. Kugellagern. Für die Umlauf schmierung dient eine regelbare Pumpe, der Schmieröl stand kann durch ein Schauglas überwacht werden. Der Zündzeitpunkt wird auf einer nachstellbaren Teilung ab gelesen; die Vorzündung bleibt über den ganzen Meß bereich des Motors gleich. Eine 12 V-Zünd-Lichtmaschine, die zugleich den Strom für die Klopfmeßgeräte liefert, erzeugt die Zündspannung über einen Unterbrecher mit Spule. Der Zylinder wird durch Verdampfungskühlung je nach dem Untersuchungsverfahren mittels Wasser oder Glykol-Wasser-Gemisch gekühlt, wobei der Umlauf durch Schwerkraftwirkung geschieht und die entstehenden Dämpfe durch eine besondere Kühlschlange in einen Kondensator geführt und dort niedergeschlagen werden.

Der Vergaser ist.bei den neueren Ausführungen ein Dreischwimmer-Vergaser mit Umschalthahn und gemein samer Düse samt Trichter, Bild 7 und 8. Die Schwimmer nadelventile sind durch Drehen der Kraftstoffbehälter in der Höhe verstellbar, wodurch sich der Brennstoff spiegel und dadurch das Gefälle gegenüber der feststehen den Düsenmündung ändert. Das Kraftstoff-Luft-Gemisch ist auf diese Weise in seiner Zusammensetzung viel feiner regelbar als z. B. durch Ändern des Düsenquerschnittes.

Die eingestellten Brennstoffspiegel werden an Marken ab gelesen, wobei eine Teilstrichänderung durch eine ganze Umdrehung des Kraftstoffbehälters hervorgerufen wird. Das Brennstoff-Luft-Gemisch kann in seiner Zuleitung durch einen Heizeinsatz elektrisch bis zu 150 ° vorgewärmt werden. Die Vorheizung ist über einen Wider stand an der Schalttafel regelbar. Die Gemischtempe ratur wird an einem Quecksilberthermometer abgelesen. Die Belastung des Prüfmotors geschieht über ein Keilriemenpaar durch einen gekapselten Drehstrom-Kurz schlußläufer, der zugleich zum Anlassen dient. E r sitzt verschiebbar auf Spannschienen, so daß Riemenscheiben von verschiedenen Durchmessern aufgebracht werden können. In der Regelausführung kann er auf 380 V oder 220 V Wechselspannung geschaltet werden. Die Drehzahl des Stromerzeugers bleibt unverändert, während die Drehzahl des Prüfmotors durch die Größe der Keilriemen scheibe bestimmt wird. Über dem Stromerzeuger sitzt die Zünd-Lichtmaschine; beide sind durch einen weiteren Keilriemen verbunden.

Die Schalttafel trägt den sog. Klopfstrommesser, den Heizstrommesser samt Regelwiderstand, die nötigen Schalter und ein Schreibpult. Ein Leistungsmesser zeigt die Stromentnahme beim Anfahren des Prüfmotors und dessen Leistung während des Betriebes an.

Der Klopfstrommesser mißt thermoelektrisch die Temperaturerhöhung eines Widerstandes durch den Klopf-strom, d. i. den zwischen den Kontakten des Springstift indikators bobachtung hat das Gerät eine Dämpfung, die zum rascheren Einstellen des Motors oder zum Prüfen des Spring stiftindikators abgeschaltet werden kann. Da der Indikator den Klopfstrom steuert, muß seiner Einstellung besondere Sorgfalt zugewendet werden, weil hiervon die Ergebnisse von Vergleichsmessungen mit anderen Prüfstellen stark abhängig sein können. Es handelt sich hier bei um die Einstellung der Spannung der beiden Blatt federn, die die Kontakte tragen, sowie der Spannung der Schraubenfeder für die Einstellschraube, ferner des Abstandes der Kontakte selbst. Hierfür sind besondere Hilfsgeräte entwickelt, wobei die gefühlsmäßige Einstellung durch eine meßtechnische ersetzt wird. Diese Meßgeräte sind in einem handlichen Kasten untergebracht, Bild 9. Die Untersuchungen über den Verlauf des Klopfstromes mit der Braunschen Röhre hatten übrigens das beachtenswerte Ergebnis, daß der Klopfstrom für eine Verpuffung nicht etwa aus einem einzigen Stromstoß besteht, sondern aus mehreren unregelmäßigen Im pulsen, Bild 10, die von der oben erwähnten Einstellung des Spring stiftindikators abhanden. ie Leistung des Prüfmotors beträgt bei 1 000 U/min rd. 1kW . Der Kraftstoffverbrauch ist mit etwa 0 ,5 1/h sehr gering, so daß es in der Regel möglich ist, mit 0,25 1 Kraftstoff die Klopffestigkeit zu bestimmen. Man kann mit dem I. G.-Prüfmotor Kraftstoffe sowohl für Kraftfahrzeuge als auch für Flugzeuge untersuchen 1).

E r g e b n is s e d e s P r ü f m o t o r s

Die gute Übereinstimmung der Mgeßergebnisse mit dem I. G.- und dem CFR-Motor zeigen Versuche, die die Arbeitsgemeinschaft für Kraftfahrwesen beim Reichs- und Preußischen Verkehrsministerium kürzlich durchführtela). In Bild 11 und 12 sind aus der Fülle der Versuche für vier CFR-Motoren und vier I. G.-Prüfmotoren die Streuungen der gemessenen Klopfwerte verschiedener Kraftstoffe dargestellt. Im Mittel ergibt sich bei den CFR-Motoren eine Streuung von 3,4, bei den I. G.-Prüfmotpren. dagegen nur von 2 £ Einheiten der Oktanzahl. Man erkennt dem nach, daß zwischen dem CFR-Motor und dem I. G.-Prüfmotor praktisch kein Unterschied besteht. Aus diesem Grunde ist der I. G.-Prüfmotor nach dem Erlaß des Reichs- und Preußischen Verkehrsministers vom 25. März 1938 in Deutschland für die einheitliche Klopffestigkeits prüfung von Leichtkraftstoffen zugelassen. Wie groß das Bedürfnis nach einem deutschen Klopf-prüfgerät ist, ergibt sich aus der Verbreitung, die der Motor in der kurzen Zeit von zwei Jahren gefunden hat: Es sind heute über 100 Motoren im Betrieb oder- im Bau. In Bild 13 sind die Eichergebnisse der ersten 25 I. G.-Prüfmotoren zusammengefaßt. In jedem der Prüfmotoren wurden sechs Kraftstoffe (Erdölbenzine und Hydrier benzine), und zwar Fliegerbenzine (1, 2, 3) und Kraftwagenbenzine (a, b, c ) untersucht. Die Unterschiede betragen durchweg ebenfalls nur 2 bis 3 Oktanzahl-Ein heiten und sind damit nicht größer als die der CFR-Motoren. Weiter wurde für alle Prüfmotoren die Eich kurve mit I. G.-Eichbenzin in Mischung mit Reinbenzol nach dem CFR-Motor-Verfahren aufgestellt; die Streuung dieser Werte beträgt, ähnlich wie bei den Einzelunter-suchungen, nur 2 bis 3 Einheiten der Oktanzahl.

Dieselkraftstoffe

Auch bei den Dieselkraft stoffen spielt die Untersuchung des Verbrennungsablaufes eine große Rolle, wobei das Klopfen ebenfalls diejenige; Eigenschaft der Kraftstoffe ist, die bei der Erzeugung vorwiegend zu berücksichtigen ist. Ein Maß für die Neigung des Kraftstoffes zum Klopfen ist der Zündverzug, d. i. die Zeit vom Ein spritzbeginn bis zum Zündbeginn.' Man hat versucht, analytische Meßverfahren zur Beurteilung der Dieselkraftstoffe heranzuziehen; die, wenn auch nicht zahlreichen, Abweichun gen von dem vorausgesetzten Zusammenhang machen aber die analytischen Bestimmungen — ebenso wie bei den Ottokraftstoffen — unsicher. Im Gegensatz zu den Klopfprüf-verfahren für Ottokraftstoffe, die allgemein anerkannt sind, geht man indessen bei der Untersuchung der Dieselkraftstoffe in bezug auf ihr Klopfverhalten weder in Deutschland noch im Ausland einheitlich vor. E s hat sich zwar eingebürgert, die Diesel kraftstoffe nach Cetenzahlen5) oder Cetanzahlen“) zu bewerten, jedoch sind über den Prüfmotor doch keine ein heitlichen Vorschläge vorhanden. Bekanntlich weist das Klopfverhalten der beiden Motorengattungen, des Otto- und des Dieselmotors, eine Gegensätzlichkeit auf, Übersichtstafel 1. Die wichtigsten Übersichtstafel

1. V o r a u s s e t z u n g e n d e s K l o p f e n s i m D i e s e l - u n d O t t o m o t o r .

Betriebsbedingungen, die von der Seite des Motors auf das Klopfen Einfluß haben, sind: Verdichtung, Drosselung oder Überladung, Belastung, Drehzahl und Wärmezustand der Maschine. Man sieht z. B., daß das Klopfen beim Ottomotor mit dem Verdichtungsverhältnis, der Belastung sowie mit der Betriebserwärmung der Maschine zunimmt, während beim Dieselmotor das Gegenteil der Fall ist. Diese Gegensätzlichkeit kann man auch in der Darstel lung der gegenseitigen Abhängigkeit der Oktanzahl und der Cetenzahl zeigen 7). Die Oktanzahl hat um so höhere Werte, je niedriger die Cetenzahl ist, d. h. die Klopffestigkeit und Zündwilligkeit stehen im umgekehrten Verhältnis zueinander. Einer Oktanzahl von 100 entspricht eine Cetenzahl von etwa 20 und einer Oktanzahl null eine Cetenzahl von etwa 55.

A u f b a u e in e s P r ü f m o t o r s f ü r D ie s e l k ra ft s t o f fe

Bei der Untersuchung deutscher Dieselkraftstoffe, die bis in die Jahre 1929 und 1930 zurückgeht, benutzten wir bei der I. G. Farbenindustrie zunächst vorhandene langsamlaufende Einzylindermotoren an denen die Messungen mit gewöhnlichen Federindikatoren durchgeführt wurden. Wir mußten aber bald'zu schnellaufenden Motoren über gehen, wofür wir eine sehr geeignete Bauart in dem ^stehenden Einzylindermotor der Motorenwerke Mannheim von etwa 11 Hubraum fanden. Dieser Motor wurde auf veränderliche Verdichtung umgebaut; Bild 14 und 15 zeigen seinen Aufbau, Bild 16 zeigt seine Ansicht8). Die Maschine läßt sich in einem Drehzahlbereich von etwa 500 bis 2 000 U/min verwenden und ihre Leistung beträgt bei 1 000 U/min rd. 3 kW. Auch hier sind die Kipp hebel für die Ventilbetätigung in gleicher Weise wie bei dem Prüfmotor für Leichtkraft stoffe gelagert. Der Zylinderkopf und die Zylinderbüchse werden durch Schnecke und Schneckenrad verschoben, so daß der Verbrennungsraum hierdurch verändert werden kann. Auf diese Weise läßt sich das Verdichtungsverhältnis von etwa 8 : 1 bis 25 :1 verändern. Der Zylinderkopf mit der Laufbüchse ist durch eine als Handrad ausgebildete Gegenmutter kräftig gegen das Gehäuse abgestützt, so daß die Maschine völlig erschütterungs frei läuft. Auch hier wird Verdampfungskühlung angewen det; eine elektrische Heizvorrichtung dient zum uftvor wärmern Bei der Ausbildung des Verbrennungsraumes war anzustreben, daß er bei der Verdichtungsänderung annähernd ähnlich blieb. Eine strenge geometrische Ähnlichkeit läßt sich allerdings wegen des gleich bleibenden Zylinderdurchmessers nicht erzielen. Am einfach sten ist wohl die in Bild 17 dargestellte Form. Der Verdichtungsraum befindet sich in der

Hauptsache im Zylinderkopf und kann durch einen zusätzlichen Kolben verändert werden. Doch läßt dieser Zylinderkopf bei dem vorgesehenen kleinen Zylinderdurchmesser zu wenig Platz für die Ventile.

Die besten Ergebnisse wurden mit der Brennraum gestaltung nach Bild 18 und 19 erhalten. Im Kolbenboden befindet sich eine annähernd halbkugelförmige Vertiefung, in die der Kraftstoff durch einen kegelförmigen Anschnitt

seitwärts von der Zylinderwand her eingespritzt wird. Die verwendete Einlochdüse spritzt mit einer Neigung von 12 ° gegen den Kolbenboden. Die Länge des Kegel einschnittes ist so groß, daß der Kraftstoffstrahl gut zer

stäuben kann. Die Kugelförm des Verbrennungsraumes wurde als Idealform angestrebt, weil hierbei der kleinste Durchbrennweg erzielt wird. Es wurde unmittelbare Einspritzung gewählt, da sie klar und deutlich Unterschiede der untersuchten Kraftstoffe in ihrem Verbrennungsverlauf erkennen läßt. Ein Vorkammermotor z. B. wäre infolge seiner Unempfindlichkeit gegenüber Kraftstoffänderungen weniger geeignet.


B e s t i m m u n g d e r C e t e n z a h l

Bei der Bestimmung des Zündverzuges wird die Verdichtung solange geändert, bis der Zündverzug einen be stimmten Wert erreicht hat, den wir auf 180 Kurbelwinkel festgelegt haben. Die Einspritzung geschieht dabei stets 20° Kurbelwinkel vor dem oberen Totpunkt. Durch Vergleich mit Ceten als zündwilligem und Alpha-Methylnaphthalin als stark klopfendem Be-zugskraftstoff läßt sich so die Cetenzahl des untersuchten Kraftstoffes bestimmen.

Vielfach wird der Zündverzug auch bei un veränderlicher Verdichtung gemessen. Die Beziehungen zwischen bei den Verfahren geben Bild 20 und 21 wieder. Die Cetenzahl ist hier einmal in Abhängigkeit vom Verdichtungsverhältnis bei unveränder tem Zündverzug und das andere Mal in Abhängig keit vom Zündverzug bei gleichbleibendem Verdichtungsverhältnis dar gestellt. Nach beiden Verfahren wurden für die gleichen Kraftstoffe die gleichen Cetenzahlen ermittelt. Der Nachteil des Verfahrens mit gleichbleibender Verdichtung liegt jedoch darin, daß der Meßbereich nur gering ist; z. B. liegt er bei dem Verdichtungsverhältnis 16 nur zwischen den Cetenzahlen 25 und 60, Bild 21. Bei Cetenzahlen unter 25 läuft die Maschine bei dieser Verdichtung nicht mehr ein wandfrei, und bei höheren Cetenzahlen als 60 ist kein meßbarer Unterschied im Zündverzug mehr vorhanden. Auf Grund dieser Erkenntnis wurde das Verfahren der Messung bei gleich bleibendem Zündverzug für die weiteren Untersuchungen angewendet.

E r g e b n i s s e d e s P r ü f - D ie s e l m o t o r s

Bild 22 gibt Eichkurven des I. G.-Prüf-Dieselmotors wieder. Als Eichstoffe dienten — an Stelle von Ceten und Alpha-Methylnaphthalin — ein badischer Dieselkraftstoff und ein Steinkohlenmittelöl. E s ergibt sich dabei, daß zwischen der Verdichtungsveränderung, ausgedrückt in mm Zylinderkopfverschiebung, und der Änderung der Cetenzahl praktisch eine geradlinige Abhängigkeit besteht. Infolge äußerer Einflüsse — Verkokung der Düse, Hängenbleiben der Nadel, Änderung des Wärmezustandes der Maschine — muß die Eichung wiederholt werden. Es ist bei uns Regel, daß vor und nach jeder Versuchsreihe diese Beziehung nachgeprüft wird. Dabei hat sich heraus gestellt, daß bei einer Veränderung des Zusammenhanges sich die Verdichtungslinie parallel zu sich verschiebt. Es genügt daher in der Regel, nur einen oder zwei Punkte dieser Geraden zu bestimmen, wodurch das Meßverfahren sehr vereinfacht wird und an Genauigkeit gewinnt. Während an der oberen Grenze die Dieselkraftstoffe in allen praktisch vorkommenden Fällen unmittelbar gemessen werden kömien, geht die untere Grenze für die unmittel bare Messung etwa bis zu der Cetenzahl 10. Kraftstoffe mit noch niedrigerer Cetenzahl können durch Mischungen bestimmt werden.

Bild 23 gibt die Ergebnisse von Vergleichsversuchen wieder, die am I. G.-Prüf-Dieselmotor und am CFR-Motor 8) nach dem Verfahren mit veränderlicher Verdichtung durchgeführt wurden. Die größten Abweichungen betragen 5 Cetenzahl-Einheiten. Die Übereinstimmung ist als gut zu bezeichnen, wenn man beachtet, daß die Motoren von verschiedener Bauart und nicht aufeinander abgestimmt sind.

M e s s u n g d e s Z ü n d v e r z u g s

Für die Messung des Zündverzugs sind verschiedene Verfahren anwendbar, Bild 24 bis 26. So wird an dem Prüfmotor des Forschungsinstituts für Kraftfahrwesen und Fahrzeugmotoren an der Technischen Hochschule Stuttgart 9) der Einspritzbeginn und der Zündbeginn durch je einen Quarzgeber bestimmt, die einen Stromkreis steuern, Bild 24. Die Dauer der Stromeinschaltung entspricht dem Zündverzug und wird durch ein Galvanometer angezeigt. An Stelle des Galvanometers läßt sich zur Messung des Zündverzugs auch eine auf dem Schwung rad angeordnete Glimmlampe verwenden. Die Deutsche Versuchsanstalt für Luftfahrt (DVL)

gebraucht für Zündverzugmessungen den von ihr ent

wickelten Druckgeber10). Der Druckgeber spricht an,

wenn der Verdichtungsdruck, auf den er durch Verbin

dung mit einer Druckluftflasche eingestellt ist, über

schritten wird. Der Einspritzbeginn wird von einem

elektrischen Unterbrecher an der Einspritzdüse angezeigt.

Beide Vorgänge lassen sich durch eine Schaltung, z. B.

nach Bild 25, verbinden.

Wir verwendeten ursprünglich für Zündverzugs

messungen die Ionisierungsstrecke, Bild 2611). Erforder

lich sind hierfür — ähnlich wie bei der Anordnung

Bild 25 — zwei Stromkreise, deren Spannungen einander entgegengeschaltet werden.

In dem mittleren Teil der Leitung, der beiden Stromkreisen gemeinsam ist, liegt eine Glimm lampe, die auf dem Schwung rad angeordnet ist. In dem ersten Stromkreis, dem linken in Bild 26, befindet sich der Einspritzkontakt. Wird nun die Brennstoffnadel angehoben, so leuchtet die Glimmlampe auf. Am Ende des Zündverzugs, also bei Zündbeginn, wird durch die heißen Verbrennungsgase die Ionisierungsstrecke im zweiten (rechten) Stromkreis leitend, so daß die Spannung in dem gemeinsamen Teil der Leitung wegen der Gegenschaltung der Stromquellen ausgeglichen wird und die Glimmlampe erlischt.

E r m i t t l u n g d e s Z ü n d v e r z u g s a u s d e m D r u c k v e r l a u f

Außer dem Zündverzug sind jedoch zur Beurteilung eines

Dieselkraftstoffes auch der Druckanstieg und der Ver

brennungshöchstdruck von Bedeutung. Hierzu ist es not

wendig, den gesamten Druckverlauf aufzuzeichnen, wie

dies nunmehr bei den Untersuchungen mit dem I. G.-Prüf-

Dieselmotor geschieht. Am besten dürfte sich für die

Druckaufnahme der Piezo-Quarzindikator1'-’) mit der

Braunschen Röhre eignen; gegenüber dem häufig ange

wandten Schleifenoszillographen hat die Braunsche Röhre

den Vorteil der Einfachheit und Billigkeit13). Die Haupt

teile der Anordnung sind: die Druckdose mit den Quarzen

als Geber, die Braunsche Röhre als Beobachtungsgerät,

der Verstärker und das Seitenablenkgerät für den Ka

thodenstrahl10. 14). Das Druckdiagramm erscheint auf

dem Leuchtschirm der Braunschen Röhre und kann ge

gebenenfalls im Lichtbild aufgenommen werden. Zugleich

mit dem Druckverlauf lassen sich Zeitmarken, Totpunkt

marken, Kennzeichnungen des Einspritzbeginns usw. auf

nehmen.

A b l e n k g e r ä t f ü r d e n K a t h o d e n s t r a h l

Bei den im Handel befindlichen Indikatoren wird für die waagerechte Seitenablenkung des Strahls vielfach ein

Kippschwinggerät verwendet, wobei die Druckvorgänge in Abhängigkeit von der Zeit aufgezeichnet werden. Man versucht dabei, dieses Gerät mit der Hand so einzuregeln, das es synchron mit dem Motor läuft. Dies läßt sich nur schwer erreichen, so daß das Diagramm auf der Bild fläche wandert, was die Auswertung erschwert. Wir haben ein besonderes Seitenablenkgerät entwickelt, das unmittelbar mit der Maschine gekuppelt ist. Dieses zeich net den Druck in Abhängigkeit vom Kurbelwinkel auf. Da der Kurbelwinkel der Zeit praktisch verhältnisgleich ist, erhalten wir hier in einfacher Weise ein Zeit-Druck-Diagramm; es hat zudem noch den großen Vorteil, daß es auf der Röhre nicht wandert. In einem Gehäuse aus Isolierstoff, das mit der Kurbelwellen-Drehzahl umläuft, befindet sich ein Wasser ring, der als Widerstand und Spannungsteiler verwendet wird und sich m it' dem Gehäuse infolge der Fliehkraft dreht, Bild 27. Durch zwei Schleifringe am Gehäuse wird dem Wasserring eine Gleichspannung zugeführt. Die Zu führungselektroden am Wasserring sind genau um 180° versetzt, wobei der Totpunkt in die Mitte des aufzunehmenden

Diagramms, Bild 28, zu liegen kommt. Der Abgriff der Spannung für die Seitenablenkung geschieht durch einen Finger, der fest angeordnet ist und im Wasserring schleift. Wir erhalten so den gesamten Druckverlauf gleichmäßig über dem Kurbelwinkel. Bei diesem Diagramm interessieren uns aber vorzugsweise die Vorgänge bei der Verbrennung um den oberen Totpunkt herum, die etwa einen Kurbelwinkel von 45 ° ein nehmen. In einfacher Weise lassen sich nun diese Vor gänge auf dem Schirm der Braunschen Röhre auf die ganze Diagrammlänge auseinanderziehen. Zu diesem Zweck werden die Elektroden am Wasserring um 45° gegeneinander versetzt, Bild 29. Man erhält dann das Diagramm, Bild 30, in dem man die Verbrennungs Vorgänge genau verfolgen kann. In ähnlicher Weise haben wir ein Seitenablenkgerät entwickelt, mit dem man das Druck-Weg-Diagramm zur Ermittlung der indizierten Leistung aufzeichnen kann, Bild 31 und 32. Bei dieser Anordnung stellt man ein Gleichspannungsfeld zwischen zwei Metallplatten her, zwischen denen sich Wasser befindet. Darin läuft ein kleiner Metallstift als Spannungsabnehmer um. Bei Verwendung von vollkommen ebenen Platten, die parallel zu einander angeordnet sind, hat die zwischen den Platten und dem Stift auftretende Spannung einen reinen Sinus verlauf. In diesem Fall würde die Seitenablenkung einer unendlich langen Schubstange entsprechen. Bei endlicher Schubstangenlänge kann man die Abweichung von der Sinuslinie dadurch erhalten, daß man die Platten krümmt. Anstatt einer Flüssigkeit kann ein fester Widerstand Verwendung finden, auf dem ein Stift schleift.

D r u c k a n s t i e g u n d V e r b r e n n u n g s h ö c h s t d r u c k

Der Verbrennungshöchstdruck und der Druckanstieg d p ! d p in at/° Kurbelwinkel sind für die Bewertung eines Kraftstoffes sehr wichtig, stellen doch beide ein Maß für die Beanspruchung des Dieselmotor-Triebwerkes dar. Hoher Verbrennungsdruck und steiler Druckanstieg er geben harten Gang des Motors. Der Höchstdruck wird unmittelbar aus den> Diagramm abgelesen, und zur Messung des Druckanstieges dient ein Neigungsmesser. Damit hat man die wichtigsten Größen des Verbrennungsvorganges bestimmt. Der Druckanstieg wird vielfach auch als d p /d t , also nach der Zeit, in at/s angegeben. Dieser Wert ist inso fern nicht ohne weiteres anwendbar, als darin die Drehzahl nicht erscheint. In Bild 33 ist in Abhängigkeit von der Motordrehzahl der Druckanstieg dpld<p für verschie dene Werte von dp/dt dargestellt. In Bild 34 erkennt man, wie sich bei unveränderlichem Druckanstieg d p i d t der Wert dp/dp, mit dem Kurbelwinkel also, mit der Motordrehzahl ändert. Bei niedrigen Drehzahlen ist ein stärkerer Anstieg vorhanden als bei hohen. Zweck mäßiger ist es daher, den W ert dp/dp als Maß für den Druckanstieg zu nehmen. Wie sich die Abhängigkeit von verschiedenen Kraftstoffen hinsichtlich des Druckanstieges und des Höchst druckes auswirkt, zeigt Bild 35. E s sind hier Kraftstoffe verschiedener A rt untersucht, deren Getenzahlen zwischen 25 und 60 liegen. Man sieht, daß der dp/dp-W ert sowie der Höchstdruck um so höher sind, je niedriger die Ceten-zahl ist, was im allgemeinen auch zu erwarten war. Während aber der Höchstdruck nahezu geradlinig mit abnehmender Cetenzahl ansteigt, wird die Zunahme des Wertes-dp/dp bei Cetenzahlen unter etwa 35 in schnell wachsendem Maße steiler. B 4956


1) Vorgetragen vor der Automobil- und Flugtechnischen Gesellschaft Im VDI in Stuttgart.